
With no major release of the Java platform for nearly

five years, the upcoming release of Java 7 is big news.

But, with Lambda, Jigsaw, and part of Coin postponed

until Java 8 and late 2012, what can we expect from the

long-awaited Java 7? In this issue of Java Tech Journal, we

examine the new features coming up in Java 7, and what

impact these might have on the fast-changing program-

ming language market.

www.jaxenter.comIssue June 2011 | presented by

#9

TM

Java 7 – Project Coin
A Gentle Introduction to Java 7

Bringing Java 7 Support to
IntelliJ IDEA 10.5
Interview with IntelliJ IDEA senior
software developer

Java the Language vs.
Java the Platform
New and Noteworthy in JDK 7

Java 7: The Top 8 Features
The Must-Have Features in Java 7

Using Try-With-Resources in Java SE 7
Cleaning up your code and your resources

Java 7

2www.JAXenter.com | June 2011

Editorial

Not only is Java the world’s number one programming langu-
age, but it also provides the backbone to a rich and complex
ecosystem of tools and projects. With such a diverse commu-
nity relying on Java, a major update is always going to be a
tricky business – stability and backwards compatibility are
big issues, and there’s no shortage of contrasting ideas about
what should be included in a new release of Java. Sun once
estimated that it takes around 18 months to evaluate and ap-
prove proposals for changes to Java (and that’s before you
factor in the time it takes to build, test and release the chan-
ge.) There’s no such thing as a quick Java release, but Java 7
has taken longer than most: in 2007, the Java in Production
blog gave 2009 as an approximate launch date.

This delay is in no small part due to the acquisition of Sun
by Oracle. The original Java 7 roadmap was masterminded by
Sun Microsystems, before the legal wranglings (largely cent-
red around MySQL) turned the acquisition of Sun by Oracle
into a near-twelve-month battle. It’s hardly surprising Java 7
has been a long time coming.

Things finally came to a head with the proposal of Plan B.
This put forward the idea of releasing JDK 7 in 2011, minus
Lambda, Jigsaw, and part of Coin, as oppose to waiting until
2012 and delivering JDK7 with all of the initially planned
features. Ultimately, the community and Oracle opted for a

“Java 7 is here”

quicker update, with less features, which means we’ll have
to wait until 2012 and Java 8 to get our hands on lambda
expressions, literal expressions for immutable lists, sets, and
maps, and other deferred features. Although the open debate
regarding Java 7 language features is a prime example of an
open community in action, the Plan A vs. Plan B debate (and
the eventual outcome) highlighted the average Java users’ fru-
stration at the language’s pace of change.

It’s been a long wait, but Java 7 is almost here! NetBeans
7 is already available with support for the Java SE Java De-
velopment Kit 7, and the latest 10.5 release of IntelliJ IDEA
offers full Java 7 support. With Oracle recently announcing
that the Java Development Kit 7 will be generally available
on July 28, 2011, and work already underway for Java EE 7
and Java SE 8, this is an exciting time for Java! Not to men-
tion JCP.next JSR 1 and JCP.next JSR 2, which Oracle have
already submitted to “update and revitalise” the JCP: often
criticised as one of the major bottlenecks when it comes to
moving Java forward.

In this issue, we scrutinise the new features of Java 7, ask
how relevant they will be to your typical Java developer, and
look at Java 7 support in IntelliJ IDEA. Has the long wait
been worth it? Read on to find out!

Jessica Thornsby

Java 7 – Project Coin 	 3
A Gentle Introduction to Java 7
Benjamin J. Evans and Martijn Verburg

Bringing Java 7 Support to IntelliJ IDEA 10.5 	 9
Interview with IntelliJ IDEA senior software developer
Anna Kozlova

Java the Language vs. Java the Platform	 12
New and Noteworthy in JDK 7
Toby Weston

Java 7: The Top 8 Features 	 17
The Must-Have Features in Java 7
Vineet Manohar

Using Try-With-Resources in Java SE 7	 24
Cleaning up your code and your resources
Stuart Marks

In
de

x

Syntax Changes from Project Coin

www.JAXenter.com | June 2011 3

By Benjamin J. Evans and Martijn Verburg

We’re going to talk in some detail about some of the propos-
als in Project Coin. We’ll discuss the syntax and the meaning
of the new features and also some of the “whys” – that is,
we’ll try to explain the motivations behind the feature when-
ever possible without resorting to the full formal details of the
proposals. All that material is available from the archives of
the coin-dev mailing list so, if you’re a budding language de-
signer, you can read the full proposals and discussion there.

Without further ado, let’s kick off with our very first new
Java 7 feature – string values in a switch statement.

Strings in switch
Java’s switch statement allows you to write an efficient mul-
tiple-branch statement without lots and lots of ugly nested
ifs, like this:

public void printDay(int dayOfWeek) {
 switch (dayOfWeek) {
 case 0: System.out.println("Sunday"); break;
 case 1: System.out.println("Monday"); break;
 case 2: System.out.println("Tuesday"); break;
 case 3: System.out.println("Wednesday"); break;
 case 4: System.out.println("Thursday"); break;
 case 5: System.out.println("Friday"); break;
 case 6: System.out.println("Saturday"); break;
 default: System.out.println("Error!"); break;
 }
}

In Java 6 and earlier versions, the values for the cases can only
be constants of type byte, char, short, and int (or, technically,
their reference-type equivalents, Byte, Character, Short, and
Integer) or enum constants. With Java 7, the spec has been

Welcome to Java 7. Things around here are a little different than you may be used to! This is a really good thing
– we have a lot to explore now that the dust has settled and Java 7 is on its way. We’re going to warm you up
with a gentle introduction to Java 7, but one that still acquaints you with its powerful features. We’ll showcase
Project Coin, a collection of small yet effective new features. You’ll learn new syntax, such as an improved way
of handling exceptions (multi-catch). You’ll also learn about try-with-resources and how it helps you to avoid bugs
in the code that deals with files or other resources such as JDBC. By the end of this article, you’ll be writing Java
in a new way and you’ll be fully primed and ready for larger changes in Java 7 such as NIO.2. So, let’s get going,
shall we!

A lot to explore

Java 7 – Project Coin

Syntax Changes from Project Coin

www.JAXenter.com | June 2011 4

extended to allow for Strings to be used as well – they’re con-
stants after all:

public void printDay(String dayOfWeek) {
 switch (dayOfWeek) {
 case "Sunday": System.out.println("Dimanche"); break;
 case "Monday": System.out.println("Lundi"); break;
 case "Tuesday": System.out.println("Mardi"); break;
 case "Wednesday": System.out.println("Mercredi"); break;
 case "Thursday": System.out.println("Jeudi"); break;
 case "Friday": System.out.println("Vendredi"); break;
 case "Saturday": System.out.println("Samedi"); break;
 default: System.out.println("Error: " + dayOfWeek +
 " is not a day of the week"); break;
 }
}

In all other respects, the switch statement remains the same;
like many Project Coin changes, this really is a very simple
change for making life in Java 7 a little easier.

Enhanced syntax for numeric literals
Several proposals offered new syntax for integers. The aspects
that were ultimately chosen were:

Numeric constants (one of the integer primitive types) •	
expressed as binary values.
A specific suffix to denote that an integer constant has type •	
short or byte.
Use of underscores in integer constants for readability.•	

None of these is particularly earth-shattering at first sight but
all have in their own way been a minor annoyance to the Java
programmer.

The first two are of special interest to the low-level pro-
grammer – the sort of person who works with raw network
protocols, encryption, or other pursuits where they may have
to indulge in a certain amount of bit twiddling. So let’s take a
look at those first.

Binary Literals
Before Java 7, if you’d wanted to manipulate a binary value,
you’d either have had to engage in awkward (and error-prone)
base conversion or write an expression like this:

int x = Integer.parseInt("1100110", 2);

This is a lot of typing just to ensure that x ends up with that
bit pattern (which is 102 in decimal, by the way). There’s
worse to come though. Despite looking fine at first glance,
there are a number of problems. It:

Is really verbose.•	
Has a performance hit for that method call.•	
Means you’d have to know about the two-argument form •	
of parseInt().
Requires you to remember the detail of how •	 parseInt()
behaves when it has two args.
Makes life hard for the JIT compiler.•	
Is representing a compile-time constant as a runtime expres-•	
sion (so it can’t be used as a value in a switch statement).
Will give you a runtime exception (but no compile-time •	
exception) if you get a typo in the binary value.

Fortunately, with the advent of Java 7, we can now write:

int x = 0b1100110;

Now, no one’s saying that this is doing anything that couldn’t be
done before, but it has none of the problems we listed above.

So, if you’ve got a reason to work with binary values –
for example, low-level handling of bytes, where you can now
have bit-patterns as binary constants in switch statements –
this is one small feature that you might find helpful.

Listing 1: Handling several different excep-
tions in Java 6

public Configuration getConfig(String fileName_) {

Configuration cfg = null;
try {
 String fileText = getFileText(fileName_);
 cfg = verifyConfig(parseConfig(fileText));
} catch (FileNotFoundException fnfx) {
 System.err.println("Config file " + fileName_ + " is missing");
} catch (IOException e) {
 System.err.println("Error while processing file " + fileName_);
} catch (ConfigurationException e) {
 System.err.println("Config file " + fileName_ + " is not consistent");
} catch (ParseException e) {
 System.err.println("Config file " + fileName_ + " is malformed");
}

return cfg;
}

The Well-Grounded Java Developer

By Benjamin J. Evans and Martijn Verburg
In this article, based on The Well-Grounded
Java Developer, the authors introduce Java
7 and showcase Project Coin, a collection of
small yet effective new features. You’ll find
out about the new syntax, such as strings in
switch, numeric literal enhancements, multi-
catch for exception handling and the new

diamond syntax to reduce boiler plate generics code. You’ll also
learn about try-with-resources and how it automatically closes
off resources and deals with exception handling for I/O and other
resources such as JDBC connections.

Syntax Changes from Project Coin

www.JAXenter.com | June 2011 5

Underscores in numbers
You’ve probably noticed that the human mind is really quite
radically different from a computer’s CPU. One specific ex-
ample of this is in the way that our minds handle numbers.
Humans aren’t in general very comfortable with long strings
of numbers. That’s one reason we invented the hexadecimal
system – because our minds find it easier to deal with shorter
strings that contain more information rather than long strings
containing little information per character.

That is, we find 1c372ba3 easier to deal with than 000111
00001101110010101110100011, even though a CPU would
really only ever see the second form.

One way that we humans deal with long strings of numbers
is to break them up. A US phone number is usually repre-
sented like this:

404-555-0122

Other long strings of numbers have separators too:

$100,000,000 (Large sums of money)
08-92-96 (UK banking sort codes)

Unfortunately, both , and – have too many possible meanings
within the realm of handling numbers while programming,
so we can’t use either of those as a separator. Instead, the
Project Coin proposal borrowed an idea from Ruby and in-
troduced the underscore, _, as a separator. Note that this is
just a bit of easy-on-the-eyes compile time syntax – the com-
piler just strips out those underscores and stores the usual
digits.

So, you can write 100_000_000 and you should hopefully
not confuse that with 10_000_000 (unlike 100000000, which
is easily confused with 10000000). Or, to apply this to our
own examples:

long l2 = 2_147_483_648L;
int bitPattern = 0b0001_1100__0011_0111__0010_1011__1010_0011;

Notice how much easier it is to read the value assigned to l2.
(Yes, it’s 2G, and it’s too big to fit into an int.)

By now, you should be convinced of the benefit of these
tweaks to the handling of integers, so let’s move on.

Improved exception handling
There are two parts to this improvement – multi-catch and,
effectively, final rethrow. To see why they’re helpful, consider
the following Java 6 code, which tries to find, open, and parse
a configuration file and handles a number of different possible
exceptions, as shown in listing 1.

getConfig() is a method that can encounter a number of dif-
ferent exceptional conditions:

The configuration file may not exist.•	
It may disappear while we’re trying to read from it.•	
It may be malformed syntactically.•	
It may have invalid information in it.•	

The exceptions really fit into two distinct functional groups.
Either the file is missing or bad in some way or the file is
present and correct in theory but was not retrievable (perhaps
because of hardware failure or network outage). It would be
nice to compress the cases down into just these two cases.
Java 7 allows us to do this, as shown in listing 2.

Note that the exception e has to be handled in the catch
block as the common supertype of the possible exceptions
(which will usually be Exception or Throwable in practice)
because the exact type is not knowable at compile-time.

An additional bit of new syntax is for helping with re-
throwing exceptions. In many cases, developers may want
to manipulate a thrown exception before rethrowing it.
The problem is that, in previous versions of Java, code like
this:

 try {
 doSomethingWhichMightThrowIOException();
 doSomethingElseWhichMightThrowSQLException();
 } catch (Throwable t) {
 …
 throw t;
 }

Will force the programmer to declare the exception signa-
ture of this code as Throwable – the real dynamic type of the
exception has been swallowed. However, it’s relatively easy
to see that the exception can only be an IOException or a
SQLException and, if we can see it, then so can the compiler.
In this snippet, we’ve made a single word change to use the
next Java 7 syntax:

try {
 doSomethingWhichMightThrowIOException();
 doSomethingElseWhichMightThrowSQLException();
} catch (final Throwable t) {
 …
 throw t;
}

Listing 2: Handling several different excep-
tions in Java 7

public Configuration getConfig(String fileName_) {

Configuration cfg = null;
try {
 String fileText = getFileText(fileName_);
 cfg = verifyConfig(parseConfig(fileText));
} catch (FileNotFoundException | ParseException | ConfigurationException e) {
 System.err.println("Config file " + fileName_ + " is missing or malformed");
} catch (IOException iox) {
 System.err.println("Error while processing file " + fileName_);
}

return cfg;
}

Syntax Changes from Project Coin

www.JAXenter.com | June 2011 6

The appearance of the final keyword indicates that the type
that is actually thrown is the runtime type of the exception
that was actually encountered – in this example, this would
either be IOException or SQLException. This is referred to
as “final rethrow” and can protect against throwing an overly
general type here, which then has to be caught by a very gen-
eral catch in a higher scope. Enhancements in the compiler
mean that the final keyword is actually optional, but we’ve
found that, while starting out with this feature, it’s actually
easier to include it.

In addition to these general improvements to exception
handling, the specific case of handling resources has been im-
proved in 7 – so that’s where we’ll turn next.

Try-with-resources
This change is easy to explain but has proven to have hidden
subtleties, which made it much less easy to implement than
originally hoped. The basic idea is to allow a resource (for
example, a file or something a bit like one) to be scoped to a
block in such a way that the resource is automatically closed
when control exits the block.

This is an important change for the simple reason that vir-
tually no one gets the manual handling of resource closing
100 percent right. Until recently, even the reference how-to
from Sun was wrong. The proposal submitted to Project Coin
for this change includes the astounding claim that two thirds
of the uses of close() in the JDK had bugs in them!

Fortunately, compilers can be made to excel at producing
exactly the sort of pedantic, boilerplate code that humans so
often get wrong, and that’s the approach taken by this change,
which is usually referred to as try-with-resources.

This is a big help in writing error-free code. To see just how
much, consider how you would write a block of code in order
to read from a URL-based stream URL and write to a file with
Java 6. It would look something like it’s shown in listing 3.

The key point here is that, when handling external resourc-
es, Murphy’s Law applies – anything can go wrong at any
time:

The 1.	 InputStream can fail:
To open from the URL.•	
To read from it.•	
To close properly.•	

The file corresponding to the 2.	 OutputStream can fail:
To open.•	
To write to it.•	
To close properly.•	

Or have some combination of more than one of the 3.	
above.

This last possibility is actually where a lot of the headaches
come from – the possibility of some combination of excep-
tions is very difficult to deal with well.

Let’s consider some Java 7 code for saving code from the
web. As the name suggests, url is a URL object that points
at the entity we want to download, and file is a File object

TIP

Java 7’s NIO.2 API makes the above logic even simpler, with less
exception handling. Check out the Files class for more details.

Try-with-resources and AutoCloseable

Under the hood, the try-with-resources feature is achieved by intro-
ducing a new interface called AutoCloseable, which a class must
implement in order to appear as a resource in the new ARM try
clause. Many of the Java 7 platform classes have been converted
to implement AutoCloseable (and it has been made a superinter-
face of Closeable), but you should be aware that not every aspect
of the platform has adopted this new technology – specifically, the
AWT classes have not rolled it out yet.
For your own code, however, you should definitely use try-with-
resources whenever you need to work with resources – it will help
you avoid bugs in your exception handling.

Listing 3: Java 6 syntax for resource manage-
ment

InputStream is = null;
try {
 File file = new File("output.txt");
 URL url = new URL("http://www.java7developer.com/blog/?page_id=97");
 is = url.openStream();
 OutputStream out = new FileOutputStream(file);
 try {
 byte[] buf = new byte[4096];
 int n;
 while ((n = is.read(buf)) >= 0)
 out.write(buf, 0, n);
 } catch (IOException iox) {
 // Handles exception (could be read or write)
 } finally {
 try {
 out.close();
 } catch (IOException closeOutx) {
 // Can’t do much with exception
 }
 }
} catch (FileNotFoundException fnfx) {
 // Handles exception
} catch (IOException openx) {
 // Handles exception
} finally {
 try {
 if (is != null) is.close();
 } catch (IOException closeInx) {
 // Can’t do much with exception
 }
}

Syntax Changes from Project Coin

www.JAXenter.com | June 2011 7

where we want to save what we’re downloading. Let’s look
at Listing 4.

This basic form shows the new syntax for a block with
automatic management – the try with the resource in round
brackets. For C# programmers, this is probably a bit reminis-
cent of a using clause and that’s a good starting point when
working with this new feature. The resources are used by the
block and then automatically disposed of when you’re done
with them. You still need to worry about handling excep-
tions with regards to finding the valid resource in the first
place, but, once you’re using it, the resource gets automati-
cally closed.

This is the main reason for preferring the new syntax – it’s
just much less error prone – the compiler is not susceptible to
the mistakes that basically every developer will make when
trying to write this type of code manually.

Diamond syntax
One of the problems with generics is that the definitions and the
setup of instances can be really verbose. Let’s suppose that you
have some users, whom you identify by a user id (which is an
integer), and each user has some lookup tables, and the tables
are specific to each user. What would that look like in code?

Map<Integer, List<String, String>> usersLists =
 new HashMap<Integer, List<String, String>>();

That’s quite a mouthful, and almost half of it is just dupli-
cated characters. Wouldn’t it be better if we could just write
something like the code below, and have the compiler just
infer the type information on the right hand side?

Map<Integer, List<String, String>> usersLists = new HashMap<>();

Thanks to the magic of Project Coin – you can. In Java 7,
the shortened form for declarations like that is entirely legal.
It’s backwards compatible as well so, when you find yourself
revisiting old code, you can just cut the older, more verbose
declaration and start using the new type-inferred syntax to
save a few pixels.

Simplified varargs method invocation
This is one of the simplest changes of all – it just moves a
warning about type information for quite a specific case

where varargs combines with generics in a method signa-
ture.

Put another way, unless you’re in the habit of writing code
that takes as arguments a variable number of references of
type T and does something to make a collection out of them,
such as code that looks like this:

public static <T> Collection<T> doSomething(T... entries) {
 ...
}

Then you can move on to the next section. Still here? Good.
So what’s this issue all about?

Well, as you probably already know, a varargs method is
one that takes a variable number of parameters (all of the
same type) at the end of the argument list. What you may
not know is how varargs is implemented. All of the variable
parameters at the end are put into an array (which the com-
piler automatically creates for you) and are passed as a single
parameter.

This is all well and good, but here we run into one of the
admitted weaknesses of Java’s generics – you are not nor-
mally allowed to create an array of a known generic type.
So, this:

HashMap<String, String>[] arryHm = new HashMap<>[2];

Won’t compile; you can’t make arrays of a specified generic
type. Instead, you have to do this:

HashMap<String, String>[] warnHm = new HashMap[2];

Which gives a warning that has to be ignored. Notice that you
can define warnHm to be of the type array of HashMap<String,
String>. You just can’t create any instances of that type and,
instead, have to hold your nose (or at least, suppress the warn-
ing) and force an instance of the raw type (which is array of
HashMap) into warnHm.

These two features – varargs methods really working on the
synthetic arrays that the compiler conjures up and arrays of
known generic types not being valid instantiable types – come
together to cause us a slight headache. Consider this bit of
code:

HashMap<String, String> hm1 = new HashMap<>();
HashMap<String, String> hm2 = new HashMap<>();

Collection<HashMap<String, String>> coll = doSomething(hm1, hm2);

Why diamond syntax?

This form is called diamond syntax because, well, the shortened
type information looks like a diamond. The proper name in the
proposal is improved type inference for generic instance creation
(ITIGIC), which is a headache to remember – so, diamond syntax
it is.

Listing 4: Java 7 syntax for resource manage-
ment

try (FileOutputStream fos = new FileOutputStream(file);
 InputStream is = url.openStream()) {
 byte[] buf = new byte[4096];
 int len;
 while ((len = is.read(buf)) > 0) {
 fos.write(buf, 0, len);
 }
} catch (IOException | FileNotFoundException e) { // If file is not found }

Syntax Changes from Project Coin

www.JAXenter.com | June 2011 8

The compiler will attempt to create an array to contain hm1
and hm2, but the type of the array should strictly be one
of the forbidden array types. Faced with this dilemma, the
compiler basically cheats and breaks its own rule about the
forbidden array of generic type. It creates the array instance
but grumbles about it, producing a compiler warning that
mutters darkly about “uses unchecked or unsafe opera-
tions.”

From the point of view of the type system, this is fair
enough. However, the poor developer just wanted to use
what seemed like a perfectly sensible API and now there are
these scary-sounding warnings for no adequately explained
reason.

What’s changed in Java 7
Java 7 brought a change in the emphasis of the warning. After
all, there is a potential for violating type safety in these types
of constructions, and somebody had better be informed about
them. There’s not much that the users of these types of APIs
can really do, though. Either the code inside doSomething() is
evil and violates type safety or it doesn’t. In any case, it’s out
of the developer’s hands.

The person who should really be warned about this issue
is the person who wrote doSomething() – the API producer,
rather than the consumer. So that’s where the warning goes
– it’s moved from the site of the API use (the warning used to
be triggered when the code that used the API was compiled)

to the site where the API was defined (so the warning is now
triggered when an API is written, which has the possibility
to trigger this kind of potential type safety violation). The
compiler warns the coder implementing the API and it’s up to
them to pay proper attention to the type system.

Changes to the type system
That’s an awful lot of words to describe a very small change.
Moving a warning from one place to another is hardly a
game-changing language feature, but it does serve to illus-
trate one very important point. Earlier in this paper, we
mentioned that Project Coin encouraged contributors to
mostly try and stay away from the type system when pro-
posing changes.

This example shows how involved you need to get when
figuring out how different features of the type system interact,
and how that interaction will alter when a change to the lan-
guage is implemented. This isn’t even a particularly complex
change; larger changes would be far, far more involved with
potentially dozens of subtle ramifications.

This final example illustrates how intricate the effect of
small changes can be and completes our discussion of the
changes brought in by Project Coin. Although they represent
mostly small syntactic changes, once you’ve started using
them in practice, you will probably find that they have a posi-
tive impact on your code that is out of proportion with the
size of the change.

Summary
This article has been all about introducing some of the smaller
changes in the syntax for Java 7. You saw that, although the
changes are not earth-shattering, Java 7 will be a little bit
easier to write in a more concise and error-free manner. You
also learned that there can be challenges that cause language
designers to make smaller and more conservative changes
than they might otherwise wish.

We hope you enjoyed this article and look forward to dis-
cussing more about Java 7 and polyglot programming on the
JVM with you in a pub near you soon!

More infos

For Source Code, Sample Chapters, the Author Forum and other
resources, go to http://www.manning.com/evans/

Here are some other Manning titles you
might be interested in:

Scala in Action

Nilanjan Raychaudhuri

AspectJ in Literature Action, Second Edition

Ramnivas Laddad

DSLs in Action

Debasish Ghosh

Martijn Verburg is a Dutch Born Kiwi who co-leads the London JUG (aka
the LJC) and also is heavily involved in the London graduate/undergrad-
uate developer, CTO and software craftsmanship communities. The Java-
ranch kindly invited him to be a bartender in 2008 and he's been humbled
by the awesomeness of that community ever since. He's currently work-

ing on somewhat complex JCA Connectors and an associated open source middle-
ware platform (Ikasan) and also spends a good deal of time herding monkeys on
another open source project that deals with creating characters for d20 based role
playing games (PCGen). More recently he's joined Ben Evans in writing "The Well-
Grounded Java Developer (Covers Java 7 and polyglot programming on the JVM) for
Manning publications and can be found speaking at conferences (such as TSSJS and
DevNexus) on a wide range of topics including open sourcing software, software
craftsmanship and the latest advancements in the OpenJDK.

Ben Evans is a member of the Java SE/EE Executive Committee, helping
define standards for the Java ecosystem. He works as a technical archi-
tect and development lead in the financial industry. He is an organizer
for the UK Graduate Developer Community, a co-leader of the London
Java Community and a regular speakeron Java, concurrency, new pro-

gramming languages and related topics.

http://www.manning.com/evans/

Java 7 in Action

www.JAXenter.com | June 2011 9

JTJ: IntelliJ IDEA 10.5 will come with full Java 7 support.
What has been the most challenging Java 7 language fea-
ture to implement in IntelliJ IDEA?
Anna Kozlova: Definitely, the ability to support String types
in switch statements. We even implemented it as early as Intel-
liJ IDEA 10, to have more time to polish its usability. Indeed,
the real challenge is to integrate new language features with
the huge number of IntelliJ IDEA's intentions, inspections,
refactorings and so on. It is not rocket science to write a lexer
or a parser. It is much more important and time-consuming to
get all the existing features updated to match the change, so
that everything still works consistently after the new features
have been added.

JTJ: For you, what key benefit will Java 7 support bring to the
IntelliJ IDEA user?
Anna: IntelliJ IDEA has always been good at generating and
completing complex code fragments for you. Now, with the
new 'language syntactical sugar,' even this is not needed any-
more. So, that is the benefit - even less typing, and thus faster
coding.

JTJ: How have you tried to manage the learning curve, for
developers moving to Java 7 with IntelliJ IDEA 10.5?

Anna: As always, IntelliJ IDEA provides batch inspections
for an easier transition. For example, it is possible to run "Ex-
plicit type can be replaced with <>" inspection over the whole
project and to apply a simplification fix which will convert
new expressions to use diamonds. Of course, it will convert
only the usages where diamonds are applicable. We've also
added other inspections to compactify 'try/finally' to 'try'

with resources, collapse identical branches into multi-catch
try, etc.

JTJ: Java 7 support has been available in early access builds
of IntelliJ IDEA since March. What are the challenges of sup-
porting a technology that's still under development?
Anna: Apart from the fact that we had to rework some parts...
One other situation that we've faced recently was a differ-
ence between the specification and the way the Java compiler
works. We decided to follow the compiler because this is what
people will use.

JTJ: And, looking forward, what are the plans for Java 8 sup-
port in future releases of IntelliJ IDEA?
Anna: It doesn't take much planning to decide that all of the
features will be fully supported and that we will provide in-
spections and refactorings to help introduce the new features
into the codebase, just the same as we did with Java 7 in In-
telliJ IDEA 10.5. As for the specific features and timeframes,
it all depends on how the development of Java 8 itself pro-
ceeds.

Back in February, JetBrains announced that the major focus of their 10.5 release, would be Java 7 support. In
this interview, we speak to IntelliJ IDEA senior software developer, Anna Kozlova, to find out more about imple-
menting the new Java 7 language features in their latest IDE release.

“Java 7 in Action”
Bringing Java 7 Support to IntelliJ IDEA 10.5

Portrait

Passionate about software development and with over 10 years
of professional experience, Anna has been one of the core IntelliJ
IDEA developers since joining JetBrains in 2004. Her major areas
of expertise include code analysis, code refactorings, and test
tools integration.

2 GREAT CONFERENCES COMBINED

June 20 – 23, 2011, San Jose CA

 Technical presentations and tutorials
 In-depth coverage of the latest technologies
 Practical implementation techniques
 Neutral coverage of the most important Java Ecosystem topics

www.jaxconf.com

Partner: Organized by:

follow us:

JAX – The Premier Java,
Architecture & Agile Experience

twitter.com/JAXconf JAXConf JAXConf

Gold Sponsor:

Just JSF FullstackWebtech & JavaScript Spring

Java EE Java Core Java Languages

OSGi

PortalsAgile ALM Cloud Web Architecture

UI/Ajax/Components

Android

Silver Sponsor:

http://www.jaxconf.com
http://www.twitter.com/JAXconf
http://www.linkedincom/groups/JAXConf-3752032
http://www.facebook.com/pages/JAXconf/134526153276804?ref=ts

JAX 2011 It’s about you, it’s about Java, it’s about Web,
Architecture, Cloud & Agile
JAX is one of the world's most comprehensive conferences on web and enterprise development. It provides the
ideal forum for software developers, project managers and architects to learn about all the latest Technology,
Architecture and Agile Methodologies. JAX has become internationally renowned for its unique blend of
topics, since its conception in 2001. This year JAX is pleased to be working in collaboration with the popular
JSF Summit; a conference for application developers, solution architects, and project managers who develop
applications with JavaServer Faces (JSF), Seam, Java EE, and related technologies. We’d like to provide you a
snapshot of our programme.

All updates, keynotes and talks can be found on www.jaxconf.com

KEYNOTE
The Future of Java
Rod Johnson (VMware, Creator of Spring Framework)
The availability of cloud computing resources fundamentally changes the way that enterprises use technology and

introduces new programming paradigms. Rod Johnson, Senior Vice President of Application Platform Division at VMware and
founder of the Spring Framework, will discuss how these changes have produced a demand for an enterprise Java cloud platform
and how existing enterprise standards are not sufficient to meet these new challenges. Developers need to build applications
that leverage a dynamic and changing infrastructure, access data in non-traditional storage formats, perform complex computa-
tions against large data sets, support access from a plethora of client platforms and do so more quickly than ever before without
sacrificing scalability, reliability and performance. Meeting these demands is necessary to maintain Java as the most useful
technology to the enterprise and requires the introduction of an open, productive, Java Platform-as-a-Service.

Toward Java SE 8: Project Lambda
Daniel Smith (Oracle)
This talk will cover the primary new language features for Java
SE 8 -- lambda expressions, method references, and extension
methods -- and explore how both existing and future libraries
will be able to take advantage of them to make client code
both more performant and less error-prone.

JavaSE7 - Overview
N.N.
With the release of the long anticipated Java SE 7 this summer,
developers will gain an in depth look, with the help of code
examples and scenarios at the new features of the platform.
Shaped by the big trends in the computing industry of mul-
tiple languages and concurrent programming, attendees will
understand the advantages of the new enhancements to the
Java language, will gain insight into the new Filesystem API
and learn how best to apply it to their existing programs, and
will learn the advantages Java SE 7 brings to running other
languages such as Groovy, Scala, Python, Ruby and more. They
will understand how they can apply the latest techniques in
concurrent programming, with the new Fork/Join framework,
in order to maximize the performance of their applications on
multi-core multi-processor architectures.

The Ceylon Language Module
Gavin King (Red Hat)
Java - the language and the platform - is one of the great
success stories of the computing industry. Java code is robust
and easy to understand, making it appropriate for large-scale
deployments and large-team development. And Java was the
first major language amenable to automated refactoring and
other sophisticated tooling.
As Java continues to age, many developers ask what a langua-
ge for general purpose and business computing would look like
if it were designed today, with a close eye on the successes
and failures of Java. For the past two or three years, our team
at Red Hat have also been asking ourselves that question. The
result is the Ceylon Project - a prototype language for the Java
Virtual Machine which attempts to combine the strengths of
Java with the power of higher order functions, a declarative
syntax for defining user interfaces and specifying structured
data, and a completely redesigned SDK.
This talk demonstrates some interesting features of the lan-
guage by exploring the design of the basic types built into the
Ceylon language module.

SESSIONS

JAX – The Premier Java,
Architecture & Agile Experience

http://www.jaxconf.com

Whats’s New in JDK7?

www.JAXenter.com | June 2011 12

By Toby Weston

Java has started to show its age, it’s over sixteen years old
now and hasn’t kept up with the modern developer. The JVM
has proven itself as a serious platform for execution but the
language itself has started to feel dated. With the current
trend towards functional-style programming and the rise of
JVM targeted languages such as Scala, Java the language has
found itself in the position where it has to compete with Java
the platform. Can the new language features of JDK7 bolster
the language’s position or is it just too late? A summary of the
new and noteworthy language features include:

Type inference on generic object creation•	
Try-with-resources statements•	
Catching multiple exceptions in a single catch block•	

Type Inference on Generic Object Creation and Constructor
Arguments
This new feature allows a little brevity to the garrulity of
the language, at least when instantiating new generic objects
when the type can be inferred. For example,

private Map<Size, List<Shoe>> stock = new HashMap<Size, List<Shoe>>();

can be reduced to

private Map<Size, List<Shoe>> stock = new HashMap<>();

where the diamond operator can be inferred from the declara-
tion. It’s subtly different than leaving out the generic complete-
ly, which would reduce your type to being of Object. General
inference rules apply. So for example, return types of methods
can be used to infer the type as in the example below.

 private Callable<Long> calculateExecutionTime() {
 return new Callable<>() {
 @Override
 public Long call() throws RuntimeException {
 return ...
 }
 };
 }

Things don’t get much better than this. Actually, they do. Just
a little. Constructor generics always used to be fun and that
hasn’t really changed, although with JDK7 you can do a little
more. For example,

public class Bob<X>{
 public <T> Bob(T t) {
 }

 public static void example() {
 Bob<Integer> bob = new Bob<>("yum");
 }

 public static void anotherExample() {
 Bob<Integer> bob = new <String> Bob<Integer>("yum");
 }
}

These examples are the same as the ones Oracle give (more or
less) [2], they both work with JDK7 only and show the Inte-
ger type inferred as the class generic (X) in combination with
the diamond operator. The second example shows new syn-
tax to explicitly set type of the method generic to give some
additional compile time checks. Specifically, if you attempt
something crazy such as

New and Noteworthy in JDK 7

Java the language vs.
Java the platform
The recent preview release of JDK7 is the first public message Oracle has sent amidst the uncertainty about the
future of Java. JDK7 was originally targeted for 2008-2009 [1] and promised some great new language features,
most notably lambda support, new collections support and unsigned literals. Some twenty-four months late, the
preview release includes only a handful of new language features but given the rocky road so far, that’s prob-
ably to be expected. In this article, we’ll take a closer look at some of the new features and discuss how useful
they’re actually likely to be and by extension, Java’s place in the overcrowded language market.

Whats’s New in JDK7?

www.JAXenter.com | June 2011 13

private void yetAnotherExampleDoesNotCompile() {
 Bob<Integer> bob = new <String> Bob<Integer>(30.5); // wont compile!
}

you’ll see the friendly compilation error like this

constructor Bob in class Bob<X> cannot be applied to given types;
required: T
found: double
reason: actual argument double cannot be converted to String by method
� invocation conversion
where T,X are type-variables:
T extends Object declared in constructor <T>Bob (T)
X extends Object declared in class Bob

Interestingly, Oracle’s own examples from [2] don’t actually
compile against the preview JDK7 release. In the official doc-
umentation, they show the following

private void anotherExampleDoesNotCompile() {
 MyClass<Integer> aClass = new <String> MyClass<>(""); // wont compile!
}

which wouldn’t compile for me, citing a cannot infer type
arguments for MyClass<> error. This would imply that you
can’t use the diamond operator with explicit type specifica-
tion against generic constructor arguments. This just sounds
too flakey, I’m sure it’s an oversight and subsequent updates
will move inline with Oracle’s documentation. They have also
seemingly slipped a typo into the official documentation with
a roguè in their example;

MyClass<Integer> myObject = new <String`> MyClass<>("")

Remove it and things will compile. Leave it and languish. The
trouble is, pretty much all the examples on the web have been
based on their documentation so cut-and-pasters beware. As
an attempt to reduce the visual clutter we’re exposed to, this
feature isn’t very impressive at all. In fact, IDEs such as IntelliJ
IDEA have been doing it for some time. If you look at the first
example above in IDEA, it will automatically use code folding
to hide the repetition and display something like the following.

private Map<Size, List<Shoe>> stock = new HashMap<~>();

combined with the hit and miss documentation, this new lan-
guage feature from Oracle is decidedly underwhelming.

try-with-resources Statements and AutoCloseable
Another bugbear with the verbosity of Java has always been
the try-catch-finally syntax. The new language feature try-
with-resources statement allow you to compact this in com-
bination with auto-closable resources. Here, rather than the
familiar, try-finally to close a resource, you can “open” the
resource within the parenthesis of the try statement (as long
as the object implements the AutoCloseable interface) and
Java will take care of the close call. For example, Oracle’s
documentation [3] shows how

private String example() throws IOException {
 BufferedReader reader = new BufferedReader(...);
 try {
 return reader.readLine();
 } finally {
 reader.close();
 }
}

becomes,

private String example() throws IOException {
 try(BufferedReader reader = new BufferedReader(...) {
 return reader.readLine();
 }
}

This reduced syntax is interesting as it goes a long way to
reducing the noise typical to try blocks. An expanded and all
too familiar example might be the common try-try-catch-do-
nothing block such as the following.

public void ridiculous() {
 FileInputStream stream = null;
 try {
 stream = new FileInputStream(...);
 } catch (FileNotFoundException e) {
 // ...
 } finally {
 if (stream != null) {
 try {
 stream.close();
 } catch (IOException e) {
 // ... seriously?
 }
 }
 }
}

Which can be reduced to

public void lessRidiculous() {
 try (FileInputStream stream = new FileInputStream(new File(""))) {
 // do your thing
 } catch (FileNotFoundException e) {
 // ...
 } catch (IOException e) {
 // ...
 }
}

Here, the auto-closable resource has taken care of the call to
close the stream and in its implementation has kindly taken care
of the null check for us too. On the down side, the implementa-
tion of close in the FileInputStream has added an IOException
to the catch list (more accurately, the Closeable interface which
extends AutoCloseable and is implemented by FileInputStream
has added the exception). Despite the exception, all in all, this

Whats’s New in JDK7?

www.JAXenter.com | June 2011 14

should go some way towards tidying up this kind of resource
usage so it gets the thumbs up. Its not clear to me however, why
Oracle have chosen to miss-spell the interface names though.

interface Closeable extends AutoCloseable {
 public void close() throws IOException;
}

There is a little extra detail which could be troublesome when
using try-with-resources and that’s suppressed exceptions.
Exceptions thrown from within the close method can be sup-
pressed in favour of exceptions thrown from within the try
statement’s block. Lets look a little closer at this.

public class Fudge {

 public void suppressionOfException() {
 try (Foo foo = new Foo()) {
 throw new RuntimeException();
 } catch (CloseException e) {
 // aint gonna happen
 }
 }

 private class Foo implements AutoCloseable {
 @Override
 public void close() throws CloseException {
 throw new CloseException("exception closing resource");
 }
 }
}

The above example demonstrates an exception being thrown
in the close method but it being suppressed, the actual excep-
tion caught by the default exception handler in this case will
be RuntimeException. For example,

Exception in thread "main" java.lang.RuntimeException
 at Fudge.suppressionOfException (Fudge.java:36)
 at Fudge.main(Fudge.java:30)
 ...
 Suppressed: Fudge$CloseException: exception closing resource
 at Fudge$Foo.close(Fudge.java:45)
 ... 6 more

If we put something together based on a decompiled version
of the above, you can see what happens behind the scenes.

public void simulatingSuppressionOfException () {
 AutoCloseable closeable = new Foo();
 Throwable throwable = null;
 try {
 // this is the statement block and in our case with throw an exception
 throw new RuntimeException();
 } catch (Throwable e) {
 throwable = e;
 throw e;
 } finally {

 try {
 closeable.close();
 } catch (Exception e) {
 throwable.addSuppressed(e);
 }
 }
}

The JavaDoc tells us that in these situations two exceptions were
logically thrown but because the flow of control can only con-
tinue with one exception, the other is suppressed. Supressed ex-
ceptions are new in JDK7 and can be retrieved in a similar way
a cause can via a “getter” method. I can see this occasionally
causing the odd problem as I imagine it will become another less
well-known caveat that you’re not going to need to be aware of
until it’s too late. To be fair though, it’s likely to be something
that will be more of an issue when writing your own AutoClose-
able implementations than using Oracle's retrofitted classes.

What’s perhaps a little more concerning is putting together
tests for things that use AutoCloseable as collaborators. Pre-
viously, if something works with an InputStream, we would
typically inject that (interface) directly into the class under test
and have at it. We’re unable to do that when we “new up” the
collaborator within a try-with-resources statement so we’re
forced to pass in a factory. Not really a huge issue but it can
lead to another indirect collaborator that you could argue ob-
fuscates things. For example, the following won’t compile.

public class Example {

 private final AutoCloseable closeable;

 public Example(AutoCloseable closeable) {
 this.closeable = closeable;
 }

 public void methodThatThrowsMultipleExceptions() {
 try (closeable) { // compilation problem!
 // ...
 } catch (Exception e) {
 // ...
 }
 }
}

so, we’re forced to use a factory.

public class Example {

 private final AutoCloseableFactory factory;

 public Example(AutoCloseableFactory factory) {
 this.factory = factory;
 }

 public void methodThatThrowsMultipleExceptions() throws Exception {
 try (AutoCloseable closeable = factory.create()) {
 throw new RuntimeException();

Whats’s New in JDK7?

www.JAXenter.com | June 2011 15

 }
 }
}

Which in turn means a typical test (in our case using jmock) is
a little more verbose. I’ll leave it to you to decide if this could
become a problem.

@RunWith(JMock.class)
public class ExampleTest {

 private final Mockery context = new Mockery();

 private final Factory factory = context.mock(AutoCloseableFactory.class);
 private final AutoCloseable closeable = context.mock(AutoCloseable.class);
 private final Example example = new Example(factory);

 @Test
 public void shouldThrowExceptionFromStatementBlock() throws Exception {
 context.checking(new Expectations(){{
 one(factory).create(); will(returnValue(closeable));
 one(closeable).close(); will(throwException(new CloseException()));
 }});
 try {
 example.methodThatThrowsMultipleExceptions();
 fail();
 } catch (RuntimeException e) {
 assertThat(e.getSuppressed(), hasItemInArray(instanceOf(
� CloseException.class)));
 }
 }
}

Dr Kabutz combined this new feature with a way to auto-
matically unlock locked resources in a recent news letter [5].
Here, the Java champion implements a basic unlock of a java.
util.concurrent.Lock.

public class AutoLockSimple implements AutoCloseable {
 private final Lock lock;

 public AutoLockSimple(Lock lock) {
 this.lock = lock;
 lock.lock();
 }

 public void close() {
 lock.unlock();
 }
}

with the client calling something like

private void doSomething() {
 try { new AutoLockSimple(new ReentrantLock()) } {
 // do some stuff under the lock’s protection
 }
}

Although this is an interesting use of the new feature, deve-
lopers have been getting around this kind of verbosity for a
while by wrapping some anonymous instance of an interface
or decorating classes with this kind of boiler plate repetition.
An example I wrote for the tempus-fugit micro-library looks
like this:

public class ExecuteUsingLock<T> {

 private final Callable<T> callable;

 private ExecuteUsingLock(Callable<T> callable) {
 this.callable = callable;
 }

 public static <T> ExecuteUsingLock<T> execute(Callable<T> callable) {
 return new ExecuteUsingLock<T>(callable);
 }

 public T using(Lock lock) throws E {
 try {
 lock.lock();
 return callable.call();
 } finally {
 lock.unlock();
 }
 }
}

The “close” call is found in the familiar finally block. This is
a good example of moving towards a lambda-like approach
where clients would call some anonymous implementation like
the following (making use of static imports for more syntactic
sugar).

private void doSomethingDifferent() {
 execute(something()).using(lock);
}

private Callable<Void> something() {
 return new Callable<Void>() {
 public Void call() throws RuntimeException {
 // do some stuff under the lock’s protection
 return null;
 }
 };
}

The reason I mention this alternative is to reflect on the more
significant move to support lambdas that Oracle has put off.
The tempus-fugit example is verbose because Java is verbose
but with language support for lambdas, developers would be
free to solve their own problems in a concise way. The tem-
pus-fugit example is working within Java’s constraints, at-
tempting to push aside the noise but with the introduction of
lambdas proper, we wouldn’t need to. Introducing try-with-
resources is a response to the noise we usually put up with but
it's focused on a very specific case. If instead, we saw lambda

Whats’s New in JDK7?

www.JAXenter.com | June 2011 16

support, there just wouldn’t be such demand for things like
this; we’d have all coded our way out of it already.

Catching Multiple Exceptions
This new feature allows you to catch multiple exceptions
using a pipe to separate exception types. It removes the du-
plicated code you often get catching several exceptions and
treating them in the same way. For example,

catch (IOException | SQLException e) {
 logger.log(e);
 throw ex;
}

It looks like another workaround for the general gripes
with Java; if you’ve got pages and pages of catch statements
around a piece of code, it’s probably trying to tell you some-
thing. Exception handling is often contentious in Java. Forc-
ing checked exceptions can often lead to the over use of the
catch-and-re-throw anti-pattern and it takes a carefully con-
sidered approach to avoid the mess.

Some alternatives to leaning on the new syntax which may
well lead to a better system, include decomposing the problem,
identifying and separating roles and responsibilities and as a
by-product isolating exception generating code. You could also
try using lambda-like anonymous interface implementations or
vanilla decoration to push off to the side the exception han-
dling code (typically logging or wrapping works best here).

What’s probably more important than the mechanics though
is identifying the real boundaries of your system; those places
where you actually interact with system actors like the UI,
frameworks or just the architectural “layers” of your system.
Once you’ve spotted these, you can take steps to deal with ex-
ceptions at the appropriate place and answer the question of
when to re-throw. The logical extension to this is to treat ex-
ceptions as sub-classes of RuntimeException and only catch
and process them at your boundaries. Exclusively avoiding
checked exceptions can reduce the clutter enormously but
throwing runtime exceptions forces a high degree of respon-
sibility onto the developer, something that is at odds with the
typical “code defensively” development culture.

Given the example from Oracle above, I suspect this new
feature will just facilitate ugly, jammed in code. It seems to
say “it’s ok to deal with a bunch of exceptions in the same
way. In fact, we’ll make it easier for you”. Typical to the Java
world, there’s never a caveat around if you actually should be
doing something, just an outline of how you could. The fact
the example above (Oracle’s example, by the way) logs then
re-throws is a smell in itself, something that developers around
the world are likely to copy (it has the official Oracle stamp of
approval after all). Perhaps I'm being too harsh, but I’m not a
fan of this one.

Miscellaneous
There has also been a bunch of API additions in the JDK7 re-
lease, too many additions to mention here. A few notables how-
ever, include a new class Objects which offers helper methods to
help with null safety and a trivial deep equals method. From the

ever-popular concurrency package, there’s a new double-ended
queue (Deque) implementation and a linked list based transfer
queue. All in all though, I don’t imagine the average developer
has been crying out for, or will relish, these minor additions.

I’ve certainly focused a lot on the language features and
the JDK7 release is going to be more than just language fea-
tures including updates to JDBC, NIO, and the new Sockets
Direct Protocol for streaming over InfiniBand fabric on So-
laris. I’ve also left out the details of some of the other new
language features. We can look forward to more specificity
on throwing exceptions, better support for dynamically typed
languages running on the JVM (via the new invokedynami-
cally byte code instruction), binary literals (0B10101010),
underscores in numeric literals and the ability to use strings
in switch statements.

Conclusion
Recent trends and the emergence of new JVM targeted lan-
guages has meant that Java has started to feel a little dated, a
little long in the tooth. Amongst others, Scala is offering a less
verbose, more elegant way to exercise our craft. The new lan-
guage features of JDK7 are clearly aimed at addressing some
of the communities’ frustrations with Java but just don't go
far enough to repair Java’s fading reputation. We’re left on
tenterhooks for JDK8 just like we’ve been on tenterhooks for
JDK7 for this past two-dozen months.

With no major release of the Java platform for nearly five
years [4], Oracle has a lot of lost time to make up for. Newer,
more elegant and less verbose languages have emerged to meet
the developer communities’ needs and most of them run on the
JVM. As a platform, Java feels safe and secure, a warm place
to curl up in. It’s a proven, hardened platform and new play-
ers are happy to build their futures on that premise. However,
to compete as a language, Oracle would have to lurch Java’s
language features forward like they did in 2004 with the release
of Java 5, and the JDK7 release just isn’t it. Too much ground
has been lost and Java’s fallen out of touch with the modern
developer. Lambda support or reifiable generic types may have
helped keep things fresh but I wonder if they’ll ever arrive and
if so, whether we’ll have all moved on by then. The platform it-
self should also look forward. The lack of JVM support for in-
finite stacks or atomic multi-address updates (supporting STM)
mean the platform can’t afford to sit on its laurels either.

Links & Literature

[1]	 http://today.java.net/pub/a/today/2007/08/09/looking-ahead-to-java-7.
html

[2]	 Type Inference and Generic Constructors of Generic and Non-Generic Classes

[3]	 The try-with-resources Statement

[4]	 http://en.wikipedia.org/wiki/Java_version_history

[5]	 Automatically Unlocking with Java 7 Dr Heinz Kabutz

Toby is an independent consultant specialising in agile software devel-
opment and helping teams deliver. He’s passionate about testing, con-
currency and open source software. He has contributed to many open
source projects and created the tempus-fugit Java micro-library. If you
enjoyed this article, head over to Toby’s blog for more of the same at

http://pequenoperro.blogspot.com/.

http://today.java.net/pub/a/today/2007/08/09/looking-ahead-to-java-7.html
http://today.java.net/pub/a/today/2007/08/09/looking-ahead-to-java-7.html
http://en.wikipedia.org/wiki/Java_version_history
http://download.java.net/jdk7/docs/technotes/guides/language/type-inference-generic-instance-creation.html
http://download.java.net/jdk7/docs/technotes/guides/language/try-with-resources.html
http://www.javaspecialists.eu/archive/issue190.html

Whats’s Hot in Java 7?

www.JAXenter.com | May 2011 17

by Vineet Manohar

The Java language has undergone major changes since I
started using it in 1998. Most of the changes were driven by
the Java Community Process (JCP) which was established in
1998 as a formal and transparent process to let interested
individuals and entities participate and influence how the lan-
guage should evolve. This is done through the submission of
a change request, known as Java Specification Request (JSR),

followed by a review and a voting process. Changes or en-
hancements made to the language can be usually tracked back
to a JSR where they were originally put forward for review.
For example, the addition of Generics in Java 5 was done via
JSR 14.

Java releases
Here’s a quick snapshot of the past Java release dates (table 1).

There are several small new features and enhancements in
Java 7. Out of the 28 features that I looked at, here are the
ones that I found useful.

New features and enhancements
#1 Strings in switch
In programming, we often encounter situations where we
need to do different things based on different values of a vari-
able. For Boolean variables, an if-then-else statement is the
perfect way of branching code. For primitive variable types
we use the switch statement. However, for String variables,
we tend to resort to using multiple if-then-else branches as
follows.

Version Release Date
Java 1.0 1996

Java 1.1 1997

Java 1.2 1998

Java 1.3 2000

Java 1.4 2002

Java 5 2004

Java 6 2006

Java 7 Expected mid 2011

Java 8 Expected mid-late 2012

It’s been a while since the last major Java release and expectations were naturally high for the upcoming re-
lease. The Java 7 release initially included many JSRs with exciting features, like support for closures, which
were later deferred to Java 8 in order to release JSRs that are already done. This effectively diluted what is now
offered in Java 7 and has left some disappointed.

Table 1: Java
timeline

Language Enhancements and Features

Java 7:
The Top 8 Features

Whats’s Hot in Java 7?

www.JAXenter.com | May 2011 18

Java 6 and Before

if (language.equals("java") || language.equals("scala")) {
 // static
}
else if (language.equals("groovy")) {
 // dynamic
}
else if (language.equals("clojure")) {
 // functional
}
else {
 // new language!
}

One workaround for this is to convert the String into an enum
and then switch on the enum.

Java 7
Java 7, however, has added a language level support for
String in switch. Now you can rewrite the same code more
elegantly:

switch (language) {
case "java":
case "scala":
 // static
 break;
case "groovy":
 // dynamic
 break;
case "clojure":
 // functional
 break;
default:
 // new language!
}

Not only does this help us write more readable code, but it
also helps the compiler generate more efficient byte code as
compared to the if-then-else by actually switching on the
hashcode() and then doing an equals() comparison.

Please note that you will get a NullPointerException if the
variable language in the above example resolves to null.

I like this feature, but unlike some of the other enhance-
ments in the past (like Generic in Java 5), I don’t anticipate
using this feature a lot.

Practically, I find myself using if-then-else for one or two
values and resort to an Enum when the number of values are
higher.

#2 try-with-resources statement
One of the most useful additions in Java 7 is the auto clos-
ing of resources like InputStream which helps us reduce
boiler plate code from our programs. Suppose we were
writing a program which reads a file and closes the FileIn-
putStream when it’s done, here is how you would write the
program:

With Java 6 and Before

InputStream is = null;

try {
 is = new FileInputStream(new File("foobar.txt"));

 // read file
 // ...
}
catch (IOException ex) {
 // handle this error
}
finally {
 if (is != null) {
 is.close();
 }
}

I want to point out a couple of things in this code. Firstly, no-
tice that we declare the FileInputStream outside the try block
just so that it can be accessed in the finally block. The second
observation is that we need to initialize the InputStream to
null, so that it is guaranteed to be initialized when we access it
in the finally block. Last but not the least, the is.close() in the
finally block may throw an Exception as well, thereby hiding
the original Exception thrown in the try block Exception from
the caller. What we probably want is to handle the Exception
thrown from is.close() and throw the original IOException.

InputStream is = null;

try {
 is = new FileInputStream(new File("foobar.txt"));

 // read file
 // ...
}
catch (IOException ex) {
 // handle this error
}
finally {
 if (is != null) {
 try {
 is.close();
 }
 catch (IOException ex) {
 // supress this exception
 }
 }
}

The above code still has a shortcoming that the Exception
thrown from finally is supressed and not accessible to the call-
ing code. I’m not sure how often we want to get both the
original Exception and also the Exception thrown from the
finally block, but if we did want it, we could do always do
something like this:

Whats’s Hot in Java 7?

www.JAXenter.com | May 2011 19

InputStream is = null;

try {
 is = new FileInputStream(new File(“foobar.txt”));

 // read file
 // ...
}
catch (IOException ex) {
 // handle this error
}
finally {
 if (is != null) {
 try {
 is.close();
 }
 catch (IOException ex) {
 // supress this exception
 // … but save it in a thread local object
 SuppressedException.getThreadLocal().setException(ex);
 }
 }
}

SuppressedException above is a user written Java bean with
a field named suppressed of type Exception. The calling code
can then call SupressedException.getThreadLocal().getEx-
ception() to get the Exception that was supressed in the finally
clause. Great, we solved all the problems associated with the
try-catch-finally! Now we must remember to repeat this ex-
act sequence with each use of try-catch-finally when handling
files or other resources which need to be closed. Enter Java 7,
and we can do the above without the boiler plate code.

With Java 7

try (InputStream is = new FileInputStream(new File("foobar.txt"))) {
 // read file
 // ...
}
catch (IOException ex) {
 // handle this error
}

try can now have multiple statements in the parenthesis and
each statement should create an object which implements the
new java.lang.AutoClosable interface. The AutoClosable in-
terface consists of just one method.

void close() throws Exception {
}

Each AutoClosable resource created in the try statement will
be automatically closed! If an exception is thrown in the try
block and another Exception is thrown while closing the re-
source, the first Exception is the one eventually thrown to the
caller. The second Exception is available to the caller via the
ex.getSupressed() method. Throwable.getSupressed() is a new
method added on Throwable in Java 7 just for this purpose.

Mandatory catch block when using the try statement
Note that if you are creating AutoClosable resources in the
try block, you are required to declare a catch block to catch
the concrete exception thrown from the actual AutoClosable.
close() method. Alternatively you need to throw the Excep-
tion. Think of the close() method as implicitly being called as
the last line in the try block. So, if an application has its own
AutoClosable class as follows:

public class MyAutoClosable implements AutoClosable {
 public void close() throws MyException {
 // do something...
 // if error, then
 throw new MyException();
 }
}

Then, the following will cause a compile error:

try (MyAutoClosable my = new MyAutoClosable();) {
 // do something...
}
finally {
 // done
}

ERROR: unreported exception MyException; must be caught or declared to be thrown

To fix the above, you need to catch or throw the Exception
from the calling method.

try (MyAutoClosable my = new MyAutoClosable();) {
 // do something...
}
catch (MyException ex) {
 // catch exception arising from the close()
}
finally {
 // done
}

Syntax for declaring multiple resources
The try statement can contain multiple statements separated
by semicolon. Each statement must result in an AutoClosable
object.

try (
InputStream is = new FileInputStream(new File("foo.txt"));
InputStream is2 = new FileInputStream(new File("bar.txt"))
) {
 // read file
 // ...
}
catch (IOException ex) {
 // handle this error
}

It is illegal to declare any variable which isn’t an AutoClosable.

Whats’s Hot in Java 7?

www.JAXenter.com | May 2011 20

try (
InputStream is = new FileInputStream(new File("foo.txt"));

// illegal
long startTime = new java.util.Date().getTime();
) {
 // read file
 // ...
}
catch (IOException ex) {
 // handle this error
}

Output

ERROR: try-with-resources not applicable to variable type
 required: AutoCloseable
 found: long

AutoClosable vs Closable
The old Closable interface introduced in Java 5, which also
has the same method that now extends from AutoClosable,
implying that all Closable classes are automatically Auto-
Closable. Those classes automatically become resources that
can be created in the try statement. The slight difference in
AutoClosable and Closable is that unlike Closable.close(),
AutoClosable.close() is not supposed to be idempotent, which
means that calling it twice can have side effects. The second
difference is that since exceptions thrown from AutoClosable.
close() are suppressed, AutoClosable.close() should not throw
exceptions which can cause problems when suppressed, like
the InterruptedException.

#3 More precise rethrow
There are often situations when we want to catch multiple
exceptions of different types, do “something” with them,
and rethrow them. Let us consider this example, where we
have some code which throws IOException and SQLExcep-
tion.

public static void main(String[] args) throws IOException, SQLException {
 	 try {
 	 loadFileToDb();
 	 } catch (SQLException ex) {
 	 System.err.print(ex.getMessage());
 	 throw ex;
 	 } catch (IOException ex) {
 	 System.err.print(ex.getMessage());
 	 throw ex;
 	 }
 }

In the above example, we are logging each type of exception
being thrown by the try bock before rethrowing them. This
results in a duplication of code in the catch blocks. Before
Java 7, to get around the code duplication issue we would
catch the base exception as follows:

public static void main(String[] args) throws IOException, SQLException {
 	 try {
 		 loadFileToDb();
 	 } catch (Exception ex) {
 		 System.err.print(ex.getMessage());
 		 throw ex;
 	 }
}

However, this requires us to rethrow the base Exception type
java.lang.Exception from the calling method.

public static void main(String[] args) throws Exception {

With Java 7
Java 7 has added the “precice rethrow” feature which lets you
catch and throw the base exception while still throwing the
precise exception from the calling method.

public static void main(String[] args) throws IOException, SQLException {
 	 try {
 		 loadFileToDb();
 	 } catch (final Exception ex) {
 		 System.err.print(ex.getMessage());
 		 throw ex;
 	 }
}

Note the keyword final in the above catch clause. When a pa-
rameter is declared final, the compiler statically knows to only
throw those checked exceptions that were thrown by the try
block and were not caught in any preceding catch blocks.

#4 Multi-catch
There is no elegant way with Java 6 to catch multiple excep-
tions of different types and handle them in the same way.

try {
 doSomething();
} catch (Ex1 ex) {
 handleException();
} catch (Ex2 ex) {
 handleException();
}

You can always catch the parent Exception in order to avoid
duplication of code, but it is not always suitable especially if
the parent is java.lang.Exception.

Java 7 lets you catch multiple Exceptions in a single catch
block by defining a “union” of Exceptions to be caught in the
catch clause.

public class MultiCatchDemo {
 public static class Ex1 extends Exception {}
 public static class Ex2 extends Exception {}
 public static class Ex3 extends Exception {}
 public static class Ex4 extends Exception {}

Whats’s Hot in Java 7?

www.JAXenter.com | May 2011 21

 public static void main(String[] args) throws Ex1, Ex2, Ex3, Ex4 {
 	 try {
 		 doSomething();
 	 } catch (Ex1 | Ex2 ex) {
 		 handleException();
 	 } catch (Ex3 | Ex4 ex) {
 		 handleException2();
 	 }
 }

 private static void doSomething() throws Ex1, Ex2, Ex3, Ex4 {
 	 // ...
 }
}

Note that the pipe ‘|’ character is used as the delimiter. The vari-
able ‘ex’ in the above example is statically typed to the base class
of Ex1 and Ex2, which is java.lang.Exception in this case.

#5 Binary integral literals
With Java 7, you can now create numerical literals using bi-
nary notation using the prefix “0b”

int n = 0b100000;
System.out.println("n = " + n);

Output

n = 32

#6 Underscores in numeric literals
With Java 7, you can include underscores in numeric literals
to make them more readable. The underscore is only present
in the representation of the literal in Java code, and will not
show up when you print the value.

Without underscore

int tenMillion = 10000000;
System.out.println(“Amount is “ + tenMillion);

Output

10000000

With underscore

int tenMillionButMoreReadable = 10_000_000;
System.out.println("Amount is " + tenMillionButMoreReadable);

Output

10000000

More rules and examples
1. Consecutive underscores is legal.

int n = 1000______000;

2. Underscores can be included in other numeric types as
well.

double d = 1000_000.0d;
long l = 1000_000l;
int hex = 0xdead_c0de;
int bytes = 0x1000_0000;

3. Underscore can be included after the decimal point.

double example8 = 1000_000.000_000d;

4. It is illegal to start a literal with an underscore

// illegal
int i = _1000;

ERROR: cannot find symbol: variable _1000

5. It is illegal to end a literal with an underscore.

// illegal
int i = 1000_;

ERROR: illegal underscore

6. It is also illegal to have underscore be just before or after a
decimal point.

// illegal
double d1 = 1000_000_.0d;
double d2 = 1000_000._0d;

ERROR: illegal underscore

#7 Improved type inference for generic instance creation
Java 5 introduced generics which enabled developers to write
type safe collections. However, generics can sometimes be too
verbose. Consider the following example where we are creat-
ing a Map of List of String.

With Java 5 and 6

Map<String, List<String>> retVal = new HashMap<String, List<String>>();

Note that the full type is specified twice and is therefore re-
dundant. Unfortunately, this was a limitation of Java 5 and
6.

With Java 7
Java 7 tries to get rid of this redundancy by introducing a left
to right type inference. You can now rewrite the same state-
ment by using the <> construct.

Map<String, List<String>> retVal = new HashMap<>();

This does make the code a little less verbose. You can also use
<> construct when returning a newly created object.

Whats’s Hot in Java 7?

www.JAXenter.com | May 2011 22

public static Map<String, List<String>> parseQueryString(String queryString) {
 if (queryString == null) {
 // type is interred from the method return type
 return new HashMap<>();
 }

 // ...
}

This, in my opinion, goes only half way. The full solution
would have been a right to left full type inference.

Map map = new HashMap<String, String>();

The above would have made the code even less verbose.
Though this enhancement can still be done in a later version.

#8 More new I/O APIs for the Java platform (NIO.2)
A new set of I/O APIs and features were introduced in Java
1.4 under the java.nio package. This addition was called the
New I/O APIs, also known as NIO. Naming something New
is always short-sighted because it will not remain new forev-
er. When the next version comes along, what should the new
version be called, the NEW NEW I/O? Java 1.7 offers a rich
set of new features and I/O capabilities, called NIO.2 (New
I/O version 2?). Here are the key highlights of NIO.2.

a) Package
The most important package to look for is java.nio.file. This
package contains many practical file utilities, new file I/O re-
lated classes and interfaces.

b) The java.nio.file.Path interface
Path is probably the new class that developers will use most
often. The file referred by the path does not need to exist.
The file referred to does not need to exist. For all practical
purposes, you can think of replacing java.io.File with java.
io.Path.

Old way

File file = new File("hello.txt");
System.out.println("File exists() == " + file.exists());

New way

Path path = FileSystems.getDefault().getPath("hello.txt");
System.out.println("Path exists() == " + Files.exists(path));

c) The java.nio.file.Files class
The Files class offers over 50 utility methods for File related
operations which many developers would have wanted to be
a part of earlier Java releases. Here are some methods to give
you a sense of the range of methods offered.

copy() – •	 copy a file, with options like REPLACE_EXIST-
ING, NOFOLLOW_LINKS public static Path copy(Path
source, Path target, CopyOption... options);

move() – •	 move or rename a file public static Path move(Path
source, Path target, CopyOption... options);
newInputStream()•	 – create input stream public static In-
putStream newInputStream(Path path, OpenOption... op-
tions);
readAllBytes()•	 – similar to the Apache IOUtils.readFile-
ToByteArray public static byte[] readAllBytes(Path path)
throws IOException;
createSymbolicLink()•	 – creates a symbolic link, if supported
by the file system public static Path createSymbolicLink(Path
link, Path target, FileAttribute<?>... attrs) throws IOExcep-
tion

The full list of methods can be found at: http://download.
java.net/jdk7/docs/api/java/nio/file/Files.html

d) WatchService API
WatchService API is a new feature introduced in Java 1.7.
It provides an API that lets you “listen” to a certain type of
file system events. Your code gets called automatically when
those events occur. Examples of event types are captured by
StandardWatchEventKinds class.

ENTRY_CREATE•	 :an entry is created or renamed in the
directory
ENTRY_DELETE•	 :an entry is created or renamed out of
the directory
ENTRY_MODIFY•	 :a directory entry is modified

Example
Here’s a full example of how to watch a directory and print
any newly created files.

// the ‘logs’ directory
Path path = FileSystems.getDefault().getPath("logs");

// Create a watch service from the file system
WatchService watcher = FileSystems.getDefault().newWatchService();

// Tell me when a new entry is created in the ‘logs’ directory
WatchKey watchKey = path.register(watcher,
 			 StandardWatchEventKind.ENTRY_CREATE);

// now we wait to be called back
for (;;) {
 // take() blocks until something happens
 WatchKey key = watcher.take();

 // see if this is what you were looking for
 if (key.equals(watchKey)) {
 // process each event
 for (WatchEvent event : key.pollEvents()) {
 // simply print the path created
 System.out.println(path + ": new file created " + event.context());
 	 }
 }

 // reset the key to continue receiving events

http://download.java.net/jdk7/docs/api/java/nio/file/Files.html
http://download.java.net/jdk7/docs/api/java/nio/file/Files.html
http://download.java.net/jdk7/docs/api/java/nio/file/Files.html

Whats’s Hot in Java 7?

www.JAXenter.com | May 2011 23

 key.reset();
}

Run the above program. Then create a file ‘new.txt’ in the
directory ‘logs’. The program will print:

logs: new file created new.txt

Note about WatchService implementation
The implementation will take advantage of native support for
file change notification when supported by the native file sys-
tem, but will resort to polling otherwise.

IDE Support
Java 7 support is now available in NetBeans and IntelliJ.
Eclipse does not support Java 7 yet. The upcoming release of

Eclipse 3.7 will not have support for Java 7 either, but support
will be added in 3.7 SR1, expected September 2011 (table 2).

Conclusion
Java 7 offers many small language enhancements and fea-
tures. However, I did not find any feature as compelling as
Regex enhancement in Java 1.4 or Generics, Auto-boxing or
Enum enhancement in Java 1.5. I find the try-with-resources
enhancement particularly useful and am looking forward to
using it. I also look forward to using new features from the
NIO.2 library. Overall, I am glad that something was released
this year as opposed to releasing a monolith of changes next
year.

Publisher
Software & Support Media GmbH

Editorial Office Address
Geleitsstraße 14
60599 Frankfurt am Main
Germany
www.jaxenter.com

Editor in Chief:	 Sebastian Meyen

Editors:	 Jessica Thornsby, Claudia Fröhling

Authors:	 Benjamin J. Evans, Anna Kozlova, Vineet Manohar, Stuart W. Marks,

	 Martijn Verburg, Toby Weston

Copy Editor:	 Claudia Fröhling, Lisa Pychlau

Creative Director:	Jens Mainz

Layout:	 Dominique Kalbassi

Sales Clerk:
Mark Hazell
+44 (0)20 7401 4845
markh@jaxlondon.com

Entire contents copyright ©2011 Software & Support Media GmbH. All rights reserved. No
part of this publication may be reproduced, redistributed, posted online, or reused by any
means in any form, including print, electronic, photocopy, internal network, Web or any other
method, without prior written permission of Software & Support Media GmbH

The views expressed are solely those of the authors and do not reflect the views or po-
sition of their firm, any of their clients, or Publisher. Regarding the information, Publisher
disclaims all warranties as to the accuracy, completeness, or adequacy of any informa-
tion, and is not responsible for any errors, omissions, inadequacies, misuse, or the con-
sequences of using any information provided by Publisher. Rights of disposal of rewarded
articles belong to Publisher. All mentioned trademarks and service marks are copyrighted
by their respective owners.

Imprint

Vineet Manohar is a programmer, entrepreneur and technology enthusi-
ast with a total of 14 years of industry experience with large companies
and small startups, including his own garage startup. Vineet graduated
from Indian Institute of Technology (India) in 1997 where he won two na-
tional level programming contests. He has used Java for over 12 years and

his key interests lie in large scale systems and web frameworks which has led him to
TripAdvisor LLC, where he currently works as a Senior Software Engineer. You can reach
him via twitter @vineetmanohar or via his blog at http://www.vineetmanohar.com.

Eclipse NetBeans IntelliJ

Java 7 Support Expected Sept
2011

Yes Yes

IDE Version
Indigo (3.7)
SR1

NetBeans IDE
7.0

IntelliJ IDEA
1.5

Table 2: Java 7 support in IDEs

http://www.vineetmanohar.com

New Java SE 7 Language Features

www.JAXenter.com | May 2011 24

By Stuart W. Marks, Oracle Corporation

Consider the code in Listing 1, which loads properties from
a properties file. It looks simple enough, but it has a bug.
What’s wrong with it?

Normally, this code works fine. However, if an exception
is thrown from the props.load() call, it will terminate the
execution of this method, causing the in.close() statement
to be skipped. The FileInputStream will be left open. This
code hasn’t kept any references to the FileInputStream, so it
is subject to garbage collection. The garbage collector will
reclaim the heap memory consumed by the FileInputStream
object, but it also contains an open file descriptor or file han-
dle allocated from the underlying operating system. Unless
special action is taken before the FileInputStream object is
collected, the open file handle will remain open, without any
possibility of ever being closed. If this happens repeatedly,
the system might eventually run out of open file handles,
leading to intermittent and hard-to-diagnose failures.

We will refer to objects that require a special cleanup ac-
tion as resources, and we will refer to the failure to perform
this special action as a resource leak. Most often, the special
action is a requirement on clients of any resource objects to
call a cleanup method such as close() when they have finished
using the resource. The Java Programming Language includes
a feature called finalization. [1] Isn’t this sufficient? Finaliza-
tion was intended for preventing resource leaks, and indeed
FileInputStream has a finalize() method [2] that makes sure
the open file handle is closed before the object is collected.
This would seem to solve the problem. However, for a variety
of reasons, finalization is unreliable and its use is not recom-
mended. [3] The best way to prevent resources from leaking

is for client code to perform an explicit cleanup action. In this
example, the code must always make sure to call the FileIn-
putStream.close() method.

 The proper way to do this in Java SE 6 and earlier is to
use the finally clause of the try-catch-finally statement. The
code in a finally block is always executed, even if an excep-
tion was thrown from the try block. Calling close() from the
finally block will ensure that the resource does not leak. This

Listing 1

Properties loadProperties(String filename) throws IOException {
 Properties props = new Properties();
 FileInputStream in = new FileInputStream(filename);
 props.load(in);
 in.close();
 return props;
}

Listing 2

Properties loadProperties(String filename) throws IOException {
 Properties props = new Properties();
 FileInputStream in = new FileInputStream(filename);
 try {
 props.load(in);
 } finally {
 in.close();
 }
 return props;
}

Exception Handling

Using Try-With-
Resources in Java SE 7
Java SE 7 includes “Project Coin,” a set of small enhancements to the Java programming language. One of the
most significant of these enhancements is the new try-with-resources statement. This is a variation of the origi-
nal try statement that adds the concept of a resource. In a try-with-resources statement, resources are reliably
closed at the end of the statement, even under error conditions. The try-with-resources statement allows pro-
grams to handle errors, prevent resource leaks, and to simplify exception processing code. This article begins
by examining exception handling as it stood in Java SE 6 and earlier, and how preventing resource leaks and
handling exceptions made code complex and error-prone. We will next cover the basic definition of the try-with-
resources feature and show how this simplifies the code while avoiding resource leaks. We will conclude with
examples of handling multiple resources and wrapped resources using a more advanced form of the try-with-
resources statement.

New Java SE 7 Language Features

www.JAXenter.com | May 2011 25

technique is shown in Listing 2. The cost is a few extra lines
of code and a level of nesting, but this is necessary in order to
avoid resource leaks.

Handling Exceptions
Each of the FileInputStream constructor, the Properties.load()
method, and the FileInputStream.close() method can throw
IOException. Since our code doesn’t handle this exception,
we have included a throws IOException clause in our method
declaration. This requires callers to handle these exceptions,
which may be inconvenient. Instead of propagating IOExcep-
tion to callers, suppose that we want our method to handle
these exceptions and do something reasonable such as return-
ing null. We can do this by adding a try-catch statement with
a catch block that catches IOException and returns null. This
code is shown in Listing 3.

This code uses two separate try statements: an outer try-
catch statement to handle exceptions, and an inner try-finally
statement to ensure that the FileInputStream is closed. Note
that it isn’t possible to merge these into a single try statement.
The finally block contains a call to close(), which can throw
IOException. A catch block attached to a try statement can-
not catch exceptions from a finally block attached to the same
try statement. It’s tempting to try to write this code using a
single try statement, but doing so will inevitably lead to bugs
or errors.

This code isn’t terribly bad, but the nested try statements
tend to obscure the actual work being performed by the meth-
od: half of the lines in the method are dedicated to error check-
ing. This is the best we can do, until we get to Java SE 7.

The New Try-With-Resources Statement
Java SE 7 introduces an enhanced version of the try state-
ment called try-with-resources. The purpose of the try-with-
resources statement is to ensure that resources are always
closed properly at the end of the statement. There is a new
syntax that allows the programmer to declare one or more
resource variables. Each resource variable must be of a refer-
ence type that implements the new java.lang.AutoCloseable
interface. This interface consists of a single close() method.

It is similar to the existing java.io.Closeable interface, which
also simply defines a close() method. The main difference is
that their close() methods have slightly different exception
signatures.

AutoCloseable has been retrofitted to be a superinterface
of Closeable. The InputStream and OutputStream class
families, the Reader and Writer families, Jar- and Zip-relat-
ed classes, NIO channels, and JDBC Statement and RowSet
interfaces already implement Closeable and thus now also
implement AutoCloseable, enabling one to use objects of
any of these types as resources in a try-with-resources state-
ment.

The try-with-resources statement is defined in terms of
expansion into ordinary try-catch-finally statements. Try-
with-resources achieves its purpose by expanding into a form
that includes a finally block that automatically calls close()
on each resource variable that has been successfully initial-
ized to a non-null value. Although one might be tempted to
dismiss try-with-resources as merely “syntactic sugar,” it is
of great value because it relieves programmers of the burden
of writing tedious and error-prone exception handling code,
as shown in the previous
section.

The simple form of try-
with-resources contains
only a try block. Unlike
the existing try statement,
it is legal for a try-with-
resources statement to
omit both the catch and
finally blocks. The expan-
sion of the simple form
of try-with-resources is
shown in Listing 4.

The more complex form
of the try-with-resources
statement includes one
or more catch blocks and
optionally a finally block.
When this form of try-
with-resources is expand-
ed, the statements from
the try block are first ex-
panded into a try-finally
statement as shown in
Listing 4. Then, the catch
and finally blocks are at-
tached to a new try-catch-
finally statement that
is wrapped around the
earlier try-finally state-
ment. This expansion is
shown in Listing 5. This
looks quite complicated,
but it turns out to be ex-
actly right for many com-
mon cases, as we will see
shortly.

Listing 3

Properties loadProperties(String filename) {
 Properties props = new Properties();
 try {
 FileInputStream in = new FileInputStream(filename);
 try {
 props.load(in);
 } finally {
 in.close();
 }
 } catch (IOException ioe) {
 return null;
 }
 return props;
}

Listing 4

 try (Resource r = new Resource()) {
 process(r);
 }
// EXPANDS TO
 Resource r = new Resource();
 try {
 process(r);
 } finally {
 r.close();
 }

Listing 5

 try (Resource r = new Resource()) {
 normalProcessing(r);
 } catch (ExceptionType e) {
 exceptionProcessing();
 } finally {
 finallyProcessing();
 }
// EXPANDS TO
 try {
 Resource r = new Resource();
 try {
 normalProcessing(r);
 } finally {
 r.close();
 }
 } catch (ExceptionType e) {
 exceptionProcessing();
 } finally {
 finallyProcessing();
 }

New Java SE 7 Language Features

www.JAXenter.com | May 2011 26

(Note that this expansion is simplified from the actual defi-
nition. In the actual expansion’s finally block, there is logic
to close the resource only if it is not null. This is useful for
resources that are initialized by methods such as Class.get-
ResourceAsStream() that return null to indicate an error. In
addition, there is code to handle suppressed exceptions. Ordi-
narily, an exception thrown from a finally block would cause
a pending exception from the try block to be discarded. The
expansion of try-with-resources includes extra logic so that
an exception from the generated finally block is added to the
suppressed exception list of the pending exception, allowing
it to be propagated instead. See the proposed specification [4]
for details.)

Observe that the structure of the expansion in Listing 5 is
exactly the same as the structure of the code that we ended
up with in Listing 3. We can therefore simplify the code from
Listing 3 using the try-with-resources statement. This simpli-
fication is shown in Listing 6. This code is clearer and more
concise than the earlier code, but its semantics are essentially
unchanged.

 Note that the catch block covers any exceptions that might
be thrown by the resource variable initializer, by the main
code in the try block, and by the close() call in the finally
block added by the expansion. However, the resource vari-
able itself is not in scope within the catch or finally blocks.

Multiple Resources
It’s quite common for a section of code to deal with multi-
ple resources simultaneously, for example, to copy data from
one stream to another. Using only Java SE 6 constructs, this
would require as many try statements as there are resources,
in order to ensure that each resource can be closed properly
without affecting the others. The try-with-resources statement
handles multiple resources gracefully, by allowing declaration
and initialization of multiple resources in a single statement.
This form is expanded automatically to a series of nested
try-finally statements. An example of try-with-resources us-
ing multiple resource variables is shown in Listing 7, and its
expanded form is shown in Listing 8. This expansion pro-
vides an enormous convenience to code that handles multiple
resources. Resources are closed in the opposite order from
which they are initialized, which is usually the desired behav-
ior. In addition, if an exception occurs after initialization of
some, but not all of the resources, only the resources that have
been initialized are closed.

Wrapped Resources
The semantics that try-with-resources provides for multiple
resource variables is especially significant when they are ap-
plied to wrapped resources. The design of the java.io librar-
ies encourages the use of wrapped resources. For example,
converting bytes to characters is accomplished by wrapping
a Reader around an InputStream, and buffering is added by
wrapping a BufferedReader around the Reader. The common
idiom for creating these wrapped objects is to use nested con-
structor calls. Let’s consider an example method that takes a
URL, opens an InputStream from this URL, and reads char-
acters using a named character set, with buffering. A straight-
forward way to do this using try-with-resources is shown in
Listing 9.

In this example, the only resource variable is br. A call to
br.close() will automatically be inserted within a finally block
after the processing step. This works because the semantics of
close() on a wrapper resource are to close any wrapped resourc-
es as well. When processing completes normally, or if an ex-
ception occurs during the
processing step, br.close()
will be called. This will
close the underlying In-
putStreamReader as well
as the InputStream that
it contains.

Unfortunately, there is
still a bug in this code. It
is also possible for excep-
tions to be thrown dur-
ing the initialization step.
If the requested charac-
ter set name csName is
invalid, the InputStream-
Reader constructor will
throw UnsupportedEn-
codingException. This
is a subclass of IOEx-
ception and so it will
be caught by the catch
block. However, since br
has not been successfully
initialized, br.close() will
not be called. As a result,
the InputStream returned
from url.openStream()
will be left open with
no references to it, and
we will have a resource
leak.

The problem here is
that we are creating a
resource by calling url.
openStream(), but we
are not storing a refer-
ence to it in a resource
variable. If a reference
to the resource has not

Listing 6

Properties loadProperties(String filename) {
 Properties props = new Properties();
 try (FileInputStream in = new FileInputStream(filename)) {
 props.load(in);
 } catch (IOException ioe) {
 return null;
 }
 return props;
}

Listing 7

try (Resource1 r1 = new Resource1();
 Resource2 r2 = new Resource2();
 Resource3 r3 = new Resource3())
{
 normalProcessing(r1, r2, r3);
} catch (ExceptionType e) {
 exceptionProcessing();
} finally {
 finallyProcessing();
}

Listing 8

try {
 Resource1 r1 = new Resource1();
 try {
 Resource2 r2 = new Resource2();
 try {
 Resource3 r3 = new Resource3();
 try {
 normalProcessing(r1, r2, r3);
 } finally {
 r3.close();
 }
 } finally {
 r2.close();
 }
 } finally {
 r1.close();
 }
} catch (ExceptionType e) {
 exceptionProcessing();
} finally {
 finallyProcessing();
}

New Java SE 7 Language Features

www.JAXenter.com | May 2011 27

been stored in a resource variable, the try-with-resources
statement cannot ensure that it is closed. The same thing can
happen with the InputStreamReader and the BufferedReader.
If the BufferedReader constructor were to throw an exception
(admittedly, this seems unlikely) it will leave unreferenced,
open instances of InputStreamReader and InputStream, again
resulting in a resource leak.

The solution to this problem is to unfold the initialization
so that each resource is stored in its own resource variable.
Earlier resource variables are in scope and can be used in
the initialization of later re-
source variables, enabling us
to declare and initialize the
resources from the inside out.
By assigning each resource to
its own resource variable, we
can ensure that if an excep-
tion were to occur during the
initialization of one of the resources, the previously initial-
ized resources will be closed. The resulting code is shown in
Listing 10. This code properly handles exceptions that occur
any time during initialization, processing, and the subsequent
close() calls, and it avoids resource leaks in all cases.

Observant readers will notice that close() is called more
than once for the wrapped resources. In the expansion of the
above code, the try-with-resources statement automatically
generates calls to close() on each of br, isr, and is because
they are declared as individual resource variables. As noted
above, closing a wrapper object is defined to close wrapped
objects as well. Thus, br.close() will call isr.close(), which in
turn will call is.close(). This results in multiple, redundant
calls to isr.close() and is.close(). This is not a problem. These

classes all implement the Closeable interface, whose defini-
tion requires that the second and subsequent calls to close()
have no effect. Note that this applies to Closeable resources
but not necessarily all AutoCloseable resources. Fortunately,
the java.io classes that are likely to be wrapped all implement
the Closeable interface.

Conclusion
The new try-with-resources statement added in Java SE 7
addresses several common problems with Java exception

processing and with resource
leaks. Exception processing
has historically been very in-
convenient in Java. Simple
code often mishandled ex-
ceptions or leaked resources.
On the other hand, avoiding
resource leaks and properly

handling all exceptions resulted in tedious, complex code.
The new try-with-resources statement enables one to write
code that handles all exceptions and that prevents resource
leaks, while keeping the code simple and straightforward.

If you would like to try out try-with-resources or any other
new features of Java SE 7, you can download Oracle’s imple-
mentation, documentation, and source code from [5].

Listing 9

void readFromUrl(URL url, String csName) {
 try (BufferedReader br = new BufferedReader(
 new InputStreamReader(url.openStream(), csName)))
 {
 normalProcessing(br);
 } catch (IOException ioe) {
 exceptionProcessing();
 }
}

Listing 10

void readFromUrl(URL url, String csName) {
 try (InputStream is = url.openStream();
 InputStreamReader isr = new InputStreamReader(is, csName);
 BufferedReader br = new BufferedReader(isr))
 {
 normalProcessing(br);
 } catch (IOException ioe) {
 exceptionProcessing();
 }
}

References

[1]	 James Gosling, Bill Joy, Guy Steele, Gilad Bracha. The Java Language
Specification, Third Edition. Section 12.6, “Finalization of Class Instances,” p.
325., http://java.sun.com/docs/books/jls/index.html

[2]	 Implementation of the FileInputStream class in jdk/src/share/classes/java/io/
FileInputStream.java. Available online at http://hg.openjdk.java.net/jdk7/jdk7/
jdk/file/jdk7-b144/src/share/classes/java/io/FileInputStream.java among
other locations.

[3]	 Joshua Bloch. Effective Java, Second Edition. Item 7: “Avoid Finalizers,” pp. 27ff.

[4]	 JSR 334: Small Enhancements to the Java Programming Language. Public review
draft specification, v0.875, 23 March 2011, the “try-with-resources statement”
section.

[5]	 JDK 7 Project website. JDK 7 is not complete at the time of this writing. Preview
builds, documentation, and sources can be downloaded from here: http://jdk7.
java.net/

Stuart Marks is a Principal Member of Technical Staff in the Java Plat-
form Group at Oracle Corporation. He is currently working on improving
the core libraries of the JDK. He has previously worked on JavaFX and
Java ME at Sun Microsystems. He has over twenty years of software plat-
form product development experience in the areas of window systems,

interactive graphics, and mobile and embedded systems. Stuart holds a Masters
degree in Computer Science from Stanford University.

This code is clearer than the
earlier code, but its semantics

are essentially unchanged.

http://java.sun.com/docs/books/jls/index.html
jdk/src/share/classes/java/io/FileInputStream.java
jdk/src/share/classes/java/io/FileInputStream.java
http://hg.openjdk.java.net/jdk7/jdk7/jdk/file/jdk7-b144/src/share/classes/java/io/FileInputStream.java
http://hg.openjdk.java.net/jdk7/jdk7/jdk/file/jdk7-b144/src/share/classes/java/io/FileInputStream.java
 http://jdk7.java.net/
 http://jdk7.java.net/
http://jdk7.java.net/

