
..

Optimistic and Pessimistic
Concurrency Control with Shared
Memory Models
DRAFT-14092012
A look at modern concurrency control
mechanisms in Java

..

Toby Weston June 2011

T a b l e o f C o n t e n t s i

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

Table of Contents
...

1 Table of Contents . i

2 Introduction . 1

3 Shared Memory . 2

4 Problem Definition . 4

5 Solutions . 5

5.1 Instrumenting Thread Usage using ThreadCounter . 7
5.2 Instrumenting Thread Timings using ThreadPoolTimer . 26

5.3 Instrumenting Throughput . 38

5.4 Instrumenting Blocking Ratio . 42

6 Conclusions . 50

7 References . 52

8 Appendices . 53

8.1 Appendix A . 54

T a b l e o f C o n t e n t s ii

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

1 I n t r o d u c t i o n 1

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

1 Introduction
...

1.1 Introduction

1.1.1 Abstract

In shared memory models, multiple concurrent processes may compete for access to common
memory and so must provide ways to protect the integrity of that shared memory. The concurrency
control mechanisms to achieve this can be categorised as either optimistic in nature or pessimistic
(Concurrency Control, Anon., 2011). Languages such as Java have typically offered pessimistic
approaches such as guarded memory. Guarded memory requires a lot of effort from the developer
to get right, is difficult to prove correct and is often difficult to implement whilst maintaining
good object oriented practices. Optimistic mechanisms, specifically Software Transactional
Memory, purport to simplify the development process but as a relatively new approach has had little
mainstream adoption.

As the acceleration of processor power predicted by Moore's Law reaches its peak, the utilisation of
multi-core processors predicted by Amdahl's Law becomes more and more important (Moore, 1975;
Amdahl 1967). With the current trend towards functional / object oriented hybrid languages and their
impact on concurrent programming, it seems obvious that concurrency is set to be an even bigger part
of modern software development.

Concurrent programming has always been difficult, mostly because of the shared memory model and
traditional approaches guarding it. This paper aims to explore the problems, describing characteristics
of concurrency control in shared memory systems, comparing optimistic and pessimistic approaches
using a real world example and comment on the current state and appropriateness of technology
choices.

Distributed models avoid contention as they don't actually share memory, each process works on
its own local heap. Techniques such as the actor model or distributed message passing effectively
simulate a distributed model and are out of scope for this discussion.

1.1.2 Goals

• Describe the shared memory model and appropriate concurrency control mechanisms.
• Present alternative implementations of a common concurrency problems; typical pessimistic,

lock based synchronisation solutions, modern (non-blocking) optimistic based solutions and
optimistic, software transactional memory based solution.

• Demonstrate a real-world usage examples, to help better understand the concurrency control
mechanisms and provide a reference to interested readers.

• Present conclusions / experience report.

2 S h a r e d M e m o r y 2

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

2 Shared Memory
...

2.1 Shared Memory Model
Sharing common memory allows us to build software that works on common data structures, it allows
us to utilise modern architectures to solve common problems without having to copy common data
between processes (Christopher and Thiruvathukal 2001, p.3).

2.1.1 The Java Memory Model

The part of the Java Specification (Gosling, et al. 2005) concerned with JVM implementations
of shared memory is refereed to as the Java Memory Model. It basically describes how any JVM
implementation should behave under certain conditions. Interestingly for us, it's particularly
concerned with describing behaviour under multi-threaded conditions.

In modern systems, the order in which instructions are actually executed isn't necessarily the same
order that they are arranged at source. The compiler, processors and memory subsystems may reorder
execution for best performance. In fact, on multi-core platforms, the processors will likely have their
own local cache which may or may not be in-sync with main memory. Without some synchronising
mechanism, when the data in main memory is shared, there is no guarantee that each processor
will see an up-to-date value. This turns out to be a good example of why we need the Java Memory
Model. This part of the specification defines the behaviour of such synchronisation mechanisms and
behaviour. For example, it defines that the volatile keyword should indicate to the JVM that some
shared state is not eligible for caching in processor-local caches and so ensure inter-thread visibility.

Another important part of the Java Memory Model defines as-if-serial semantics. Here, the JVM
is required to produce the same results as if serial execution were observed, regardless of the actual
optimisations and re-ordering performed, at least within a single thread. The as-if-serial semantics
however, don't prevent this guaranteed accuracy between threads and so the Java Memory Model has
to prescribe alternative guarantees. These guarantees allow us to reason about concurrent program
execution and underpin Java's concurrency control mechanisms. It's what enforces consistent
behaviour across threads when entering or leaving a synchronized block for example.

It's interesting to note that like any specification, vendors are free to ignore the Java Memory Model.
There are certainly JVM implementations that may not respect the volatile keyword for example.

2.1.2 Pessimistic Concurrency Control

Being pessimistic about how to control access to shared memory means assuming the worse. It
assumes that access to shared memory will be contended and so above all else, access must be
serialised in some way so that only one access is allowed at any given time. Java provides plenty
of mechanisms to achieve this such as the synchronized keyword, locks and other high level
mechanisms such as barriers and semaphores. They usually rely on co-operation within the code to
work correctly. For example, all potential accessors must agree to participate in the specific control
mechanism used. Failing to spot the need to participate in a given control mechanism is often the
cause of correctness problems in concurrent systems.

For the purposes of this discussion, we can summarise pessimistic control as lock based. Locking
usually implies blocking behaviour when waiting for a lock to become free.

2 S h a r e d M e m o r y 3

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

2.1.3 Optimistic Concurrency Control

An optimistic approach to concurrency control on the other hand takes a more liberal view on things.
How likely is it that shared memory will actually be contented really? What if we don't assume the
worse but instead assume that conflicts are relatively rare? In this case we can essentially leave shared
memory unguarded but provide mechanisms to spot collisions and provide failure and recovery
semantics. Database systems have provided these mechanisms for some time (Kung and Robinson,
1981) with most popular ORM mapping tools including Hibernate offering implementations.

Software Transaction Memory is an optimistic alternative to lock based control to shared memory.
It provides atomicity and isolation schematics similar to database transactions. Consistency is
maintained by the developer just as in the pessimistic world but by providing the building blocks,
consistency is supported (if not guaranteed). Durability however, can not be supported as ultimately,
any successful transaction's results are stored in volatile memory the JVM can not ensure they are
preserved.

2.1.4 Non-Blocking Algorithms; The Grey Area

As mentioned, locking usually implies blocking behaviour which can have a knock-on affect to
performance and overall progress. However, non-blocking algorithms are available as an alternative
to strict (mutually exclusive) locking when accessing shared memory. Non-blocking algorithms
guarantee either per-thread progress (wait-free) or system wide progress (lock-free) (Goetz et al,
2006, p. 329; Non-blocking algorithm, Anon., 2011) and are often cited as offering better scalability
than lock based equivalents (Goetz 2006, pp. 326-329, 336).

Usually, non-blocking algorithms require low level support for atomic read-modify-writes (such as
compare-and-swap or load-link/store-conditional). The performance of equivalent implementations
not using these primitives has traditionally been poor. More recently however, Software Transactional
Memory offers a similar yet higher level abstraction when building non-blocking code whilst
anecdotally offering good performance. Low level non-blocking constructs are usually used to build
performant data structures (queues, stacks, hash tables etc) as found in the java.util.concurrent
package.

As Goetz (2006, p. 321) points out, compare-and-swap is an optimistic technique so for the purpose
of this discussion, where do the Java classes using compare-and-swap fit in? In terms of classifying
as either pessimistic or optimistic, traditional control structures providing serial access (such as
synchronized and wait/ notify) are certainly pessimitic. Emerging techniques such as Software
Transactional Memory are clearly optimistic which just leaves the newer (post 1.5) constructs
available in the java.util.concurrent package. Those that use compare-and-swap (for example,
AtomicLong) or similar have to be classified as optimistic whereas the implementations of common
concurrent blocking abstractions such as the semaphore are pessimistic. Some classes such as Lock
implementations can even be seen as both (see Appendix A for details). However, constructs using
compare-and-swap, although offering collision detection (compareAndSet returns a boolean
indicating success), still require the developer to implement any recovery strategy.

2.1.5 Alternative Access Mechanisms

Distributed Memory is the idea that in multi-core processors (or in single-core multiple processor
systems), each core/processor has local memory and works on it with exclusivity. If a task is required
to collaborate with other core's memory, it must communicate with them as an external resource. The
actor model or distributed message passing are examples.

3 P r o b l e m D e f i n i t i o n 4

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

3 Problem Definition
...

3.1 Example Problem
In order to better contrast the concurrency control mechanisms available, I had to come up with a
concurrency problem that was meaty enough to represent real-world experiences. I ended up choosing
a problem around request statistics.

3.1.1 Request Statistics

In typical client-server software, multiple clients make requests to a centralised server to achieve
some business goal. This gives a good opportunity to encounter concurrency issues as multiple clients
might be interested in the same kinds of things represented on the server. In our case, we're interested
in recording statistics around generic requests that clients make. In a web application, this might
represent the request-response cycle and in our case, we're interested in recording how long requests
take to complete and respond to the client. We're interested in performance monitoring our client-
server application.

Specifically then, the problem is given a new web-application, we would like to record request
statistics against specific services so that we can understand typical response times and set achievable
service level agreements with customers.

3.1.2 The Ping Server

The web-application that we're interested in is called PingPong. It is a server that responds to HTTP
GET requests to the URL /ping with a HTTP message of 200 OK.

Expanding the problem description, we'd like to record the following information about requests

• Total, communicative number of ping requests
• Total, communicative number of failed ping requests (those that response with HTTP 5xx)
• Total, communicative number of successful ping requests
• The mean response time for ping requests
• Throughput of ping requests in requests per second
• Longest response time of ping requests
• The most recent response time for a ping request (to highlight the variance that would be

smoothed by showing mean response times above)
• Total, communicative response time for all ping requests

In addition, we would also like to

• Reset the counters at any time
• Allow counter retrieval and reset from distributed machine
• Allow a sliding window implementation to better highlight rapid trend changes

For the purpose of this exercise, we're not interested in measuring requests statistics from the client or
non-server side generated errors (errors that can not be represented by the server with HTTP 5xx error
codes). For example, we're not interested in timeout of connection failures.

4 S o l u t i o n s 5

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

4 Solutions
...

4.1 Example Solutions
This section presents various solutions to recording statistics of our HTTP server. Essentially, I
went about implementing basic performance monitoring abstractions and embedding these into the
server. By implementing various versions of these components (optimistic and pessimistic), we're
able to compare their characteristics. As the embedded components are associated with the request-
response cycle, we can also expect them to see lots of concurrent access when the server is under
heavy simulated load which is just what we're interested in.

This section includes a write up of thread safe components used to

• capture thread usage, the number of created, active and terminated threads in the system.
• thread timings, number of threads executed, total time and average time to execute.
• throughput of any request showing total number and a mean requests per second.
• Instrument contention of guarded segments as a ration of collisions against successful

acquisition.
discussing the testing strategies to each and how that influenced the implementations.

4.1.1 The Software Transaction Memory Library Used

The specific Software Transaction Memory library used for this discussion is the Multiverse STM. I
used some syntactic sugar available as part of Akka (akka-stm) but the core STM is Multiverse.

Multiverse version 0.6 is based around the Multi Version Concurrency Control (MVCC) idea
used by popular database implementations. As it's name suggests it revolves around the idea of
keeping versions of data or snapshots and detecting if a conflict has occurred when working with a
particular version. Multiverse implements this idea using a central AtomicLong to increment version
numbers associated with shared memory writes (Veentjer, 2011, section 10.1) and it's underlying
compareAndSet for conflict detection. This can be seen as an implementation of the Transaction
Locking II (TL2) algorithm (Dice et al, 2006). The central engine of Multiverse is called AlphaSTM.

Multiverse version 0.7 shifted away from the central clock towards the idea of a conflict counter
(comparable to SkySTM by Lev et al) which offers less contention, greater scalability and may prove
key in providing distributed transactional memory in the future. The implementation has various
strategies which should offer improvements over vanilla SkySTM. The improved core engine pools
more objects and is described by its author as faster than previous versions. Lev (2009) notes that
SkySTM offers more scalable STM than previous approaches such as TL2. The central engine in
0.7 started live as BetaSTM but has since been deprecated and a newer version called GammaSTM
introduced. At the time of writing, GammaSTM is the engine used in 0.7.

4.2 Source Code
All source code is available from Subversion. To checkout and recreate this document, run the
following commands (*nix platforms).

svn checkout http://badrobot.googlecode.com/svn/trunk/bad.robot/conconc badrobot-read-only

mvn pdf:pdf

open target/pdf/concurrency-control-1.0-SNAPSHOT.pdf

or the following on Windows platforms

4 S o l u t i o n s 6

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

svn checkout http://badrobot.googlecode.com/svn/trunk/bad.robot/conconc badrobot-read-only

mvn pdf:pdf

start target\pdf\concurrency-control-1.0-SNAPSHOT.pdf

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 7

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

5 Instrumenting Thread Usage using ThreadCounter
...

5.1 Instrumenting Thread Usage
One area that was identified as an opportunity to explore shared access was around instrumenting
thread usage within the system. The requirement being around understanding the cumulative number
of threads created and the currently active threads (threads started but not yet terminated).

5.1.1 Shared Infrastructure

The ultimate goal was to create alternative implementations of something that can be used to
instrument thread usage within the system, one pessimistic / lock based implementation and an
alternative optimistic implementation. It makes sense if these competing implementations follow a
similar approach so that they can be swapped easily for comparison.

The role of collecting or processing this information can be seen in terms of an observer, for example,

public interface ThreadObserver {

 void threadCreated();

 void threadStarted();

 void threadTerminated();

}

Fig 5.1. The basic observer interface

Java's ThreadFactory is a natural place to make observations about thread activity. All that would
be required is for the application to be wired up to use the following thread factory and we can start
our instrumentation.

public class ObservableThreadFactory implements ThreadFactory {

 private final ThreadObserver observer;

 public ObservableThreadFactory(ThreadObserver observer) {

 this.observer = observer;

 }

 @Override

 public Thread newThread(final Runnable runnable) {

 Thread thread = new Thread(new Runnable() {

 public void run() {

 try {

 observer.threadStarted();

 runnable.run();

 } finally {

 observer.threadTerminated();

 }

 }

 });

 observer.threadCreated();

 return thread;

 }

}

Fig 5.2. Example use of the observer in a ThreadFactory

Note that the class is easily tested using mock objects.

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 8

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

5.1.2 Pessimistic / Lock Based Synchronisation

This section talks about the lock based implementation an observer called ThreadCounter and its
evolution.

5.1.2.1 Basic Implementation

A naive implementation of the ThreadCounter class might look like this

@Not(ThreadSafe.class)

public class ThreadCounter implements ThreadObserver {

 private long activeThreads;

 private long createdThreads;

 @Override

 public void threadCreated() {

 createdThreads++;

 }

 @Override

 public void threadStarted() {

 activeThreads++;

 }

 @Override

 public void threadTerminated() {

 activeThreads--;

 }

 @Override

 public long getActiveCount() {

 return activeThreads;

 }

 @Override

 public long getCreatedCount() {

 return createdThreads;

 }

 @Override

 public void reset() {

 activeThreads = 0;

 createdThreads = 0;

 }

}

Fig 5.3. Naive implementation of ThreadCounter

The basic test below shows the implementation to be correct (at least in a non-concurrent context).

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 9

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class ThreadCounterTest {

 private final ThreadCounter counter = new ThreadCounter();

 @Test

 public void shouldInitialiseCounts() {

 assertThat(counter.getActiveCount(), is(0L));

 assertThat(counter.getCreatedCount(), is(0L));

 }

 @Test

 public void shouldIncrementActiveCount() {

 incrementActiveThreadsBy(3);

 assertThat(counter.getActiveCount(), is(3L));

 }

 @Test

 public void shouldDecrementActiveThreadCount() {

 incrementActiveThreadsBy(5);

 assertThat(counter.getActiveCount(), is(5L));

 decrementActiveThreadsBy(5);

 assertThat(counter.getActiveCount(), is(0L));

 }

 @Test

 public void shouldIncrementCreatedCount() {

 incrementThreadsBy(6);

 assertThat(counter.getCreatedCount(), is(6L));

 }

 @Test

 public void shouldResetCounts() {

 incrementActiveThreadsBy(8);

 incrementThreadsBy(5);

 counter.reset();

 assertThat(counter.getActiveCount(), is(0L));

 assertThat(counter.getCreatedCount(), is(0L));

 }

 private void incrementActiveThreadsBy(int amount) {

 for (int i = 0; i < amount; i++)

 counter.threadStarted();

 }

 private void decrementActiveThreadsBy(int amount) {

 for (int i = 0; i < amount; i++)

 counter.threadTerminated();

 }

 private void incrementThreadsBy(int amount) {

 for (int i = 0; i < amount; i++)

 counter.threadCreated();

 }

}

Fig 5.4. Basic single-thread behavioural unit test

5.1.3.1 Testing Thread Safety

The next test shows that it isn't correct from a concurrent context. Here, the tempus-fugit micro-
library is used to run each test method repeatedly over several threads. Specifically, each of the test
methods are run one hundred times (thanks to the RepeatingRule rule) in fifty threads (thanks to
the ConcurrentRule rule along with the count variable). To kick this off for each test method

http://code.google.com/p/tempus-fugit/wiki/Documentation?tm=6

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 10

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

at the same time, the ConcurrentTestRunner is used. Otherwise, each of the test methods will
run in their own threads, repeatedly but in sequence (ie, notifyThreadStarted would run, then
notifyThreadTerminated and so on). Adding the @RunWith means that each test method is
kicked off in its own thread at roughly the same time.

Separating a functionally correctness test from a thread-safety style test meant that the two concerns
could stay separate during testing and development.

@RunWith(ConcurrentTestRunner.class)

public class ThreadCounterIntegrationTest {

 private static final ThreadCounter counter = new ThreadCounter();

 @Rule public ConcurrentRule concurrent = new ConcurrentRule();

 @Rule public RepeatingRule repeating = new RepeatingRule();

 @Test

 @Repeating

 @Concurrent(count = 50)

 public void notifyThreadStarted() {

 counter.threadStarted();

 Introduce.jitter();

 }

 @Test

 @Repeating

 @Concurrent(count = 10)

 public void notifyThreadTerminated() {

 counter.threadTerminated();

 Introduce.jitter();

 }

 @Test

 @Repeating

 @Concurrent(count = 50)

 public void notifyThreadCreated() {

 counter.threadCreated();

 Introduce.jitter();

 }

 @AfterClass

 public static void verifyCounter() {

 assertThat(counter.getCreatedCount(), is(5000L));

 assertThat(counter.getActiveCount(), is(4000L));

 }

}

Fig 5.5. Multi-threaded test highlighting concurrency problems

The call to Introduce.jitter() introduces a pseudo-random delay of up to five milliseconds.
This is designed to try and avoid deterministic behaviour and exaggerate the affect of the tests.

The first assertion is expecting a created count of five thousand (having called threadCreated one
hundred times over fifty threads). The second assertion also ensures that threadTerminated affects
the active count (it will be run one hundred times over ten threads). The default number of repetitions
from the RepeatingRule is one hundred.

5.1.3.2 Testing Invariants

The above test is designed to load the class under test so heavily that it is reasonably likely to fail the
assertions (in verifyCounter()). It doesn't however test the invariant around the reset method. It
could be argued that if reset is called, it should reset both activeThreads and createdThreads

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 11

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

atomically. That is to say, no additional updates should be allowed to either variable until both have
been set to zero.

Testing the invariant directly proved too difficult to do, it was just too hard to simulate the race
condition between resetting and setting multiple variables. However, as well see, the natural
progression of the implementation lead to an alternative strategy which ensures the invariant is
maintained.

5.1.3.3 Making ThreadCounter Thread Safe

Making the class thread safe (and passing the previous tests) was pretty straight forward using the
AtomicLong class.

@ThreadSafe

public class ThreadCounter implements ThreadObserver {

 private final AtomicLong activeThreads = new AtomicLong();

 private final AtomicLong createdThreads = new AtomicLong();

 @Override

 public void threadCreated() {

 createdThreads.getAndIncrement();

 }

 @Override

 public void threadStarted() {

 activeThreads.getAndIncrement();

 }

 @Override

 public void threadTerminated() {

 activeThreads.getAndDecrement();

 }

 @Override

 public long getActiveCount() {

 return activeThreads.get();

 }

 @Override

 public long getCreatedCount() {

 return createdThreads.get();

 }

 @Override

 public void reset() {

 activeThreads.set(0);

 createdThreads.set(0);

 }

}

Fig 5.6. Thread safe version of the ThreadCounter

At this point, the class is thread safe but the invariant around the reset method is still not maintained
(or tested). A simple fix might be to use the synchronized keyword on all of the methods (at which
point, we'd no longer need to the AtomicLongs). This is explored in the below.

5.1.3.4 Maintaining the Invariant

An initial revision to guarding access to the state to maintain the invariant is shown below.

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 12

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

@ThreadSafe

public class ThreadCounter implements ThreadObserver {

 private final AtomicLong activeThreads = new AtomicLong();

 private final AtomicLong createdThreads = new AtomicLong();

 private final ReentrantLock lock = new ReentrantLock();

 @Override

 public void threadCreated() {

 execute(threadCreated).using(lock);

 }

 @Override

 public void threadStarted() {

 execute(threadStarted).using(lock);

 }

 @Override

 public void threadTerminated() {

 execute(threadTerminated).using(lock);

 }

 @Override

 public long getActiveCount() {

 return activeThreads.get();

 }

 @Override

 public long getCreatedCount() {

 return createdThreads.get();

 }

 @Override

 public void reset() {

 if (acquired(lock))

 execute(reset).using(lock);

 }

 private Callable<Void, RuntimeException> threadCreated = new Callable<Void, RuntimeException>() {

 @Override

 public Void call() throws RuntimeException {

 createdThreads.getAndIncrement();

 return null;

 }

 };

 private Callable<Void, RuntimeException> threadStarted = new Callable<Void, RuntimeException>() {

 @Override

 public Void call() throws RuntimeException {

 activeThreads.getAndIncrement();

 return null;

 }

 };

 private Callable<Void, RuntimeException> threadTerminated = new Callable<Void, RuntimeException>() {

 @Override

 public Void call() throws RuntimeException {

 activeThreads.getAndDecrement();

 return null;

 }

 };

 private Callable<Void, RuntimeException> reset = new Callable<Void, RuntimeException>() {

 @Override

 public Void call() throws RuntimeException {

 activeThreads.set(0);

 createdThreads.set(0);

 return null;

 }

 };

 private static Boolean acquired(final Lock lock) {

 return resetInterruptFlagWhen(new Interruptible<Boolean>() {

 @Override

 public Boolean call() throws InterruptedException {

 return lock.tryLock(10, TimeUnit.MILLISECONDS);

 }

 });

 }

}

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 13

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

Fig 5.7. More elaborate version ensuring consistency during reset

This revision attempts to maintain the invariant using Java Locks and at the same encapsulate the
use of the locks in a separate class (ExecuteUsingLock) to ensure consistent behaviour. The
unfortunate verbosity of using Callable objects to achieve this is addressed later. For now, the
helper class looks like this

public class ExecuteUsingLock<T, E extends Exception> {

 private final Callable<T, E> callable;

 private ExecuteUsingLock(Callable<T, E> callable) {

 this.callable = callable;

 }

 public static <T, E extends Exception> ExecuteUsingLock<T, E> execute(Callable<T, E> callable) {

 return new ExecuteUsingLock<T, E>(callable);

 }

 public T using(Lock lock) throws E {

 try {

 lock.lock();

 return callable.call();

 } finally {

 lock.unlock();

 }

 }

}

Fig 5.8. Execute Callables ensuring lock and unlock semantics

By using the same lock to guard all the write methods, we're effectively implementing a class
equivilant to one that synchronises on all the write methods. It becomes more serial than previous
revisions (ie, you can't call threadStarted at the same time as threadTerminated). It's up to
you, to decide if that's a big deal or not.

The reset method has been implemented to try and acquire the lock before actually executing the
reset functionality. This is an attempt to optimise the reset and isn't really necessary unless you've
tested and identified it as a bottleneck. It's here really as part of the academic exercise.

As the same lock is used when writing (including the reset), there's no need to lock on the read as the
underlying AtomicLong will ensure visibility of any successful writes. As discussed, we could avoid
the use of locks completely by synchronising all the methods and if we dropped the AtomicLongs in
favour of longs, we could make the variables volatile to ensure visibility. These alternatives are
roughly equivalent but by exposing the lock in this revision we can create a test using mock objects
that separates the synchronisation policy from the functionality of the class.

5.1.3.5 Tidying Up

A quick tidy up saw me push the anonymous Callable objects into their own classes and reduce the
noice in the ThreadCounter.

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 14

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

@ThreadSafe

public class ThreadCounter implements ThreadObserver {

 private final AtomicLong activeThreads = new AtomicLong();

 private final AtomicLong createdThreads = new AtomicLong();

 private final ReentrantLock lock = new ReentrantLock();

 @Override

 public void threadCreated() {

 execute(increment(createdThreads)).using(lock);

 }

 @Override

 public void threadStarted() {

 execute(increment(activeThreads)).using(lock);

 }

 @Override

 public void threadTerminated() {

 execute(decrement(activeThreads)).using(lock);

 }

 @Override

 public long getActiveCount() {

 return activeThreads.get();

 }

 @Override

 public long getCreatedCount() {

 return createdThreads.get();

 }

 @Override

 public void reset() {

 if (acquired(lock))

 execute(resetOf(activeThreads, createdThreads)).using(lock);

 }

}

Fig 5.9. Tidied version of the ThreadCounter

public class Increment implements Callable<Void, RuntimeException> {

 private final AtomicLong counter;

 public static Increment increment(AtomicLong counter) {

 return new Increment(counter);

 }

 private Increment(AtomicLong counter) {

 this.counter = counter;

 }

 @Override

 public Void call() throws RuntimeException {

 counter.getAndIncrement();

 return null;

 }

}

Fig 5.10. Pushing the incrementing Callable into its own class

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 15

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class AcquireLock {

 public static Boolean acquired(final Lock lock) {

 return resetInterruptFlagWhen(new Interruptible<Boolean>() {

 @Override

 public Boolean call() throws InterruptedException {

 return lock.tryLock(10, MILLISECONDS);

 }

 });

 }

}

Fig 5.11. Pushing tryLock semantics in its own class

public class Reset implements Callable<Void, RuntimeException> {

 private final List<AtomicLong> counters;

 public static Reset resetOf(AtomicLong... counters) {

 return new Reset(counters);

 }

 private Reset(AtomicLong... counters) {

 this.counters = asList(counters);

 }

 @Override

 public Void call() throws RuntimeException {

 for (AtomicLong counter : counters)

 counter.set(0);

 return null;

 }

}

Fig 5.12. Pushing the reset Callable into its own class

5.1.3.6 Building out the Guard Interface

There are some limitations with the current implementation, notably the inability to test the invariant.
We also know that we ultimately want to create a counter that isn't limited to a pessimistic locking
strategy. The idea of guarding shared memory seems to be abstract enough to imply non-lock based
solutions, so I created a basic Gaurd interface.

public interface Guard {

 <R, E extends Exception> R execute(Callable<R, E> callable) throws E;

 Boolean guarding();

}

Fig 5.13. The Guard class

The basic lock based implementation of which is shown below

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 16

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class LockingGuard implements Guard {

 private final Lock lock;

 public LockingGuard(Lock lock) {

 this.lock = lock;

 }

 @Override

 public <R, E extends Exception> R execute(Callable<R, E> callable) throws E {

 try {

 lock.lock();

 return callable.call();

 } finally {

 lock.unlock();

 }

 }

 @Override

 public Boolean guarding() {

 return acquired(lock);

 }

}

Fig 5.14. The Lock based guard

This opens several opportunities for the improving the current implementation, specifically around
testing individual components in isolation and finally creating a test to ensure the invariant in
maintained. The first step is to refactor the ThreadCounter to use the Guard.

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 17

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

@ThreadSafe

public class ThreadCounter implements ThreadObserver {

 private final AtomicLong activeThreads = new AtomicLong();

 private final AtomicLong createdThreads = new AtomicLong();

 private final Guard guard;

 public ThreadCounter(Guard guard) {

 this.guard = guard;

 }

 @Override

 public void threadCreated() {

 guard.execute(increment(createdThreads));

 }

 @Override

 public void threadStarted() {

 guard.execute(increment(activeThreads));

 }

 @Override

 public void threadTerminated() {

 guard.execute(decrement(activeThreads));

 }

 @Override

 public long getActiveCount() {

 return activeThreads.get();

 }

 @Override

 public long getCreatedCount() {

 return createdThreads.get();

 }

 @Override

 public void reset() {

 if (guard.guarding())

 guard.execute(resetOf(activeThreads, createdThreads));

 }

}

and in order to test the original ThreadCounterTest (which shouldn't be concerned with thread
safety), a dummy Guard is implemented. Notice this just delegates to the Callable object.

public class Unguarded implements Guard {

 public static Guard unguarded() {

 return new Unguarded();

 }

 @Override

 public <R, E extends Exception> R execute(Callable<R, E> callable) throws E {

 return callable.call();

 }

 @Override

 public Boolean guarding() {

 return true;

 }

}

This allows the original test to be unaffected

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 18

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class ThreadCounterTest {

 private final ThreadCounter counter = new ThreadCounter(unguarded());

 ...

}

We can also change tact when it comes to testing the invariant. Rather than try and reproduce the race
condition, it's sufficient to ensure that the same Guard is used for write and reset methods. Assuming
the runtime guard implementation has been tested, a test to ensure the same guard is used for all of the
methods ensures the invariant will be maintained. This is very implementation specific but given the
race condition proved too difficult to reproduce, it's a sensible compromise.

@RunWith(JMock.class)

public class ThreadCounterInvariantTest {

 private final Mockery context = new Mockery();

 private final Guard guard = context.mock(Guard.class);

 private final ThreadCounter counter = new ThreadCounter(guard, new AtomicLongCounter(), new AtomicLongCounter());

 @Test

 public void shouldMakeGuardedCallOnWrites() throws Exception {

 context.checking(new Expectations() {{

 exactly(3).of(guard).execute(with(any(Callable.class)));

 }});

 counter.threadCreated();

 counter.threadStarted();

 counter.threadTerminated();

 }

 @Test

 public void shouldMakeGuardedCallForResetAndSoMaintainInvariant() throws Exception {

 context.checking(new Expectations() {{

 one(guard).guarding(); will(returnValue(true));

 one(guard).execute(with(any(Callable.class)));

 }});

 counter.reset();

 }

 @Test

 public void shouldNotAttemptGuardedCall() throws Exception {

 context.checking(new Expectations() {{

 one(guard).guarding(); will(returnValue(false));

 never(guard).execute(with(any(Callable.class)));

 }});

 counter.reset();

 }

}

5.1.3.7 Taking it Further with Counters

Using the Guard abstraction is interesting but doesn't give us very much other than allowing
alternative guard implementations. The current LockGuard uses a Lock and we could supply an
alternative that uses synchronized but we don't gain much. As long as we use the same guard
instance, we'll get consistent behaviour between implementations. For example,

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 19

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class SynchronisingGuard implements Guard {

 public static Guard synchronised() {

 return new SynchronisingGuard();

 }

 @Override

 public synchronized <R, E extends Exception> R execute(Callable<R, E> callable) throws E {

 return callable.call();

 }

 @Override

 public Boolean guarding() {

 return true;

 }

}

What might be more useful is to come up with a Counter abstract to separate the increment and
decrement functions from the classes that use them from the guarding policy that controls their access.
For example,

public interface Counter {

 void increment();

 void decrement();

 Long get();

 void reset();

}

With an example implementation of

public class LongCounter implements Counter {

 private Long count = new Long(0);

 @Override

 public void increment() {

 count++;

 }

 @Override

 public void decrement() {

 count--;

 }

 @Override

 public Long get() {

 return count;

 }

 @Override

 public void reset() {

 count = new Long(0);

 }

}

or an atomic version

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 20

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class AtomicLongCounter implements Counter {

 private volatile final AtomicLong count = new AtomicLong();

 @Override

 public void increment() {

 count.getAndIncrement();

 }

 @Override

 public void decrement() {

 count.getAndDecrement();

 }

 @Override

 public void reset() {

 count.set(0);

 }

 public Long get() {

 return count.get();

 }

}

Which means we can change the ThreadCounter to take the dependencies on construction.

@ThreadSafe

public class ThreadCounter implements ThreadObserver {

 private final Counter activeThreads;

 private final Counter createdThreads;

 private final Guard guard;

 public ThreadCounter(Guard guard, Counter activeThreads, Counter createdThreads) {

 this.guard = guard;

 this.activeThreads = activeThreads;

 this.createdThreads = createdThreads;

 }

 ...

}

We can therefore construct a ThreadCounter with different semantics when it comes to use from a
concurrent context. For example,

public static ThreadObserver createLockBasedThreadSafeCounter() {

 return new ThreadCounter(new LockingGuard(new ReentrantLock()), new LongCounter(), new LongCounter());

}

creates a thread safe thread counter using the reentrant lock to ensure the invariant around reset is
maintained. The visibility of writes against the (non-thread safe) LongCounter can be ensured by the
volatile keyword in LongCounter.

public static ThreadObserver createThreadSafeCounterWithoutMaintainingResetInvariant() {

 return new ThreadCounter(unguarded(), new AtomicLongCounter(), new AtomicLongCounter());

}

The above statement creates a thread counter which is thread safe (by virtue of the
AtomicLongCounters) but doesn't maintain the invariant. The unguarded Guard doesn't include any
synchronisation.

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 21

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public static ThreadObserver createSynchronisedThreadSafeCounter() {

 return new ThreadCounter(synchronised(), new LongCounter(), new LongCounter());

}

The above statement is roughly equivalent, it creates a thread safe thread counter but uses a
Java monitor rather than a Lock for its guarding policy. It maintains the invariant as before. The
synchronised method is the static creation method for SynchronisingGuard class.

public static ThreadObserver createNonThreadSafeCounter() {

 return new ThreadCounter(unguarded(), new LongCounter(), new LongCounter());

}

The above statement creates a non-thread safe version.

The original functionality test can also be updated to use mocks (as the increment functionality can
be tested separately in the Counter implementations. For example, using JMock, we can ensure
increment and decrement functionality is called against a Counter instance.

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 22

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

@RunWith(JMock.class)

public class ThreadCounterTest {

 private final Mockery context = new Mockery();

 private final Counter activeThreads = context.mock(Counter.class, "active");

 private final Counter createdThreads = context.mock(Counter.class, "created");

 private ThreadCounter counter;

 @Before

 public void setupCounter() {

 counter = new ThreadCounter(unguarded(), activeThreads, createdThreads);

 }

 @Test

 public void shouldIncrementActiveCount() {

 context.checking(new Expectations() {{

 one(activeThreads).increment();

 }});

 counter.threadStarted();

 }

 @Test

 public void shouldDecrementActiveThreadCount() {

 context.checking(new Expectations() {{

 one(activeThreads).decrement();

 }});

 counter.threadTerminated();

 }

 @Test

 public void shouldIncrementCreatedCount() {

 context.checking(new Expectations(){{

 one(createdThreads).increment();

 }});

 counter.threadCreated();

 }

 @Test

 public void shouldResetCounts() {

 context.checking(new Expectations(){{

 one(activeThreads).reset();

 one(createdThreads).reset();

 }});

 counter.reset();

 }

}

5.1.4 Optimistic / Software Transaction Memory

In principle, a Software Transactional Memory (STM) version of the ThreadCounter should isolate
access to the shared memory (the Counters in our case) such that the integrity of that access is
maintained even from a concurrent context. The existing concurrent tests should all pass.

Using an STM based implementation of the ThreadCounter's Guard, we can slot straight into the
unit of work that the guard defines. In this way, the gaurd is no longer protecting or synchronising
access but instead defining actions that will form an atomic unit of work.

For example, the snippet below shows how the guard co-ordinates access to decrement the counter.

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 23

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public void threadTerminated() {

 guard.execute(decrement(activeThreads));

}

When an STM implementation of the guard is used, we can define our unit of work. For example,

public class StmGuard implements Guard {

 public <R, E extends Exception> R execute(Callable<R, E> callable) throws E {

 return runAtomically(callable);

 }

}

Where the runAtomically method delegates to the underlying STM library. In this case, we're
using the Multiverse STM library as the underlying library and Akka STM to provide some neater
abstractions.

 public class RunAtomically<R, E extends Exception> extends Atomic<R> {

 private final Callable<R, E> callable;

 public static <R, E extends Exception> R runAtomically(Callable<R, E> callable) {

 return new RunAtomically<R, E>(callable).execute();

 }

 public RunAtomically(Callable<R, E> callable) {

 this.callable = callable;

 }

 @Override

 public R atomically() {

 try {

 return callable.call();

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

 }

 }

A call to the is basically equivalent to the following (minus the exception handling).

new Atomic<R>() {

 return callable.call();

}.execute();

So the above defines the unit of work but any shared memory to be included in the transaction has
to be defined as a transactional reference. This is done by defining them as a Ref instance. For
example, to make use of the new StmGuard we would have to combine them with a Counter as a
transactional reference.

http://multiverse.codehaus.org/
http://doc.akka.io/stm-java

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 24

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

@Not(ThreadSafe.class)

public class TransactionalReferenceCounter implements Counter {

 private final Ref<Long> count = new Ref<Long>(0L);

 @Override

 public void increment() {

 count.set(count.get() + 1L);

 }

 @Override

 public void decrement() {

 count.set(count.get() - 1);

 }

 @Override

 public Long get() {

 return count.get();

 }

 @Override

 public void reset() {

 count.set(0L);

 }

}

As you'll notice, this class in itself isn't thread safe, nor is the StmGuard. However, when they're
combined with the ThreadCounter they'll pass all our previously defined tests (including the
concurrent ones). Therefore, the class construction below represents a thread safe ThreadCounter
that will also maintain the invariant.

static ThreadObserver createThreadSafeCounterMaintainingInvariant() {

 return new ThreadCounter(new StmGuard(), new TransactionalReferenceCounter(), new TransactionalReferenceCounter());

}

If we consider an implementation similar to the pessimistic
createThreadSafeCounterWithoutMaintainingResetInvariant we can bypass the guard
and implement atomicity around the individual mutators as below.

5 I n s t r u m e n t i n g T h r e a d U s a g e u s i n g T h r e a d C o u n t e r 25

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

@ThreadSafe

public class StmAtomicLongCounter implements Counter {

 private final Ref<Long> count = new Ref<Long>(0L);

 @Override

 public void increment() {

 new Atomic<Long>() {

 @Override

 public Long atomically() {

 return count.set(count.get() + 1L);

 }

 }.execute();

 }

 @Override

 public void decrement() {

 new Atomic<Long>() {

 @Override

 public Long atomically() {

 return count.set(count.get() - 1L);

 }

 }.execute();

 }

 @Override

 public Long get() {

 return count.get();

 }

 @Override

 public void reset() {

 new Atomic<Long>() {

 @Override

 public Long atomically() {

 return count.set(0L);

 }

 }.execute();

 }

}

Which in context of the ThreadCounter class would be used as follows.

static ThreadObserver createThreadSafeCounterWithoutMaintainingResetInvariant() {

 return new ThreadCounter(unguarded(), new StmAtomicLongCounter(), new StmAtomicLongCounter());

}

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 26

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

6 Instrumenting Thread Timings using ThreadPoolTimer
...

6.1 Instrumenting Thread Pool Timings

6.1.1 Testing using Time

Testing something that involves time can be tricky as we don't want to introduce non-determinism
by using the real system clock. Instead, we generally have to try and control time using collaborators
such as mock system clock like the Clock interface. For example, a StopWatch class night maintain
an internal time which it can use to compare with the current time in order to work out the elapsed
time. A straight forward implementation might look like the following (taken from tempus-fugit).

public class BadStopWatch {

 private Date startDate;

 private long elapsedTime;

 public BadStopWatch() {

 this.startDate = new Date();

 }

 public Duration elapsedTime() {

 return millis(new Date().getTime() - startDate.getTime());

 }

}

Writing the (rather silly) test below highlights a problem using real time in the class

public class BadStopWatchTest {

 @Test

 public void elapsedTime() throws InterruptedException{

 BadStopWatch watch = new BadStopWatch();

 Thread.sleep(millis(100));

 assertThat(watch.elapsedTime(), is(millis(100)));

 }

}

We've introduced non-determinism by using real time, there's no guarantee that we can accurately
delay the execution between object constructions and evaluation of the assertions for precisely 100
milliseconds. Unsurprisingly, the test is unlikely to pass consistently.

java.lang.AssertionError:

Expected: is <Duration 100 MILLISECONDS>

 got: <Duration 103 MILLISECONDS>

at org.junit.Assert.assertThat(Assert.java:778)

at org.junit.Assert.assertThat(Assert.java:736)

at com.google.code.tempusfugit.temporal.BadStopWatchTest.elapsedTime(BadStopWatchTest.java:32)

We clearly need a way to inject a clock that we can control. We can improve the implementation
above by introducing the Clock interface and injecting a mock instance using jmock.

http://tempus-fugit.googlecode.com/svn/site/documentation/time.html#Controlling_Time_with_a_Date_Factory
http://www.jmock.org

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 27

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class BetterStopWatch {

 private Date startDate;

 private long elapsedTime;

 private Clock clock;

 public BetterStopWatch(Clock clock) {

 this.clock = clock;

 this.startDate = clock.time();

 }

 public Duration elapsedTime() {

 return millis(clock.time() - startDate.getTime());

 }

}

@Test

public void elapsedTimeFromBetterStopWatch() {

 context.checking(new Expectations() {{

 one(clock).time(); will(returnValue(new Date(0)));

 one(clock).time(); will(returnValue(new Date(100)));

 }});

 BetterStopWatch watch = new BetterStopWatch(clock);

 assertThat(watch.elapsedTime(), is(millis(100)));

}

Alternatively, we could create our own mock to encapsulate this kind of behaviour like the following.

public final class MovableClock implements Clock {

 private final Date now;

 public MovableClock() {

 now = new Date(0);

 }

 public MovableClock(Date date) {

 now = new Date(date.getTime());

 }

 public Date time() {

 return new Date(now.getTime());

 }

 public void incrementBy(Duration time) {

 now.setTime(now.getTime() + time.inMillis());

 }

}

With the following test

@Test

public void elapsedTimeFromBetterStopWatch() {

 BetterStopWatch watch = new BetterStopWatch(clock);

 clock.incrementBy(millis(100));

 assertThat(watch.elapsedTime(), is(millis(100)));

}

6.1.2 The Race Condition Involving Time

Applying the principle above to the ThreadPoolTimer proved a little more involved. There is a
race condition when calculating the mean execution time. Here, we have time being stored along with

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 28

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

the total number of executions. Divide one by the other to get the mean, but these are two operations
which if uncontrolled, introduce the possibility of unlucky timing in terms of the interleaving with
other threads affecting those numbers.

@Override

public Long getMeanExecutionTime() {

 return totalTime / tasks;

}

The sequence of events is shown below when access to the two variables is uncoordinated.

Uncoordinated access works fine when Thread A is the only one writing to the variables, the
result will be 1000 / 10 = 100. However, with the introduction of another thread and different
interleaving, the result can be skewed. For example,

With this interleaving, the totalTime is updated to 4050 but after the main thread has read the value
for totalTime and before the related operation to set the task count to 35 could be completed. This
update hasn't been able to complete before part of another operation has begun and so the consistency
of the later will be compromised. The values the main thread will use can be seen by the dotted return
value above; 1000 / 35 = 28.6, it should either be 1000 / 10 or 4050 / 35 but not part of
each as in the example above.

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 29

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

Testing for consistency of the mean execution time (getMeanExecutionTime) is difficult. Initially,
a basic approach for the pessimistic version of the ThreadPoolTimer could use real time but
introduce uniform distribution of wait time for each timed thread. We can force an execution time
of between zero and five milliseconds and rely on the uniformity of the pseudo-random number
generator to make assertions. The theory being that any failures in the assertion are down to bugs in
the concurrent usage of the timer rather than natural variation in the wait time.

public class ThreadPoolTimerIntegrationTest {

 private static final ThreadPoolTimer timer = new ThreadPoolTimer(...);

 @Rule public ConcurrentRule concurrent = new ConcurrentRule();

 @Rule public RepeatingRule repeating = new RepeatingRule();

 @Concurrent (count = 50)

 @Repeating (repetition = 100)

 @Test

 public void executeTask() {

 Runnable task = newRunnable();

 timer.beforeExecute(currentThread(), task);

 Introduce.jitter(upTo(millis(5)));

 timer.afterExecute(task, NO_EXCEPTION);

 }

 @AfterClass

 public static void verifyCounters() {

 assertThat(timer.getNumberOfExecutions(), is(5000L));

 assertThat(timer.getMeanExecutionTime(), is(2L));

 assertThat(timer.getTerminated(), is(0L));

 }

}

Here, the test is using the same approach to spawning multiple threads as the
ThreadCounterIntegrationTest. Using real time here, we're attempting to introduce a delay of
2.5 milliseconds (on average) between timer.beforeExecute and timer.afterExecute. The
assertions ensure that the number of executions is correct (as we know the expected count ahead of
time) and make a best guess on the mean execution time. Mostly, this will pass but it still represents
an intermittently failing test. Not good.

In the optimistic version, the actual time to execute outweighed the artificial delay skewing the
assumption that on average the time taken would be 2.5 milliseconds. We can't rely on the forced
delay being the dominant contributor as the actual execution time took proportionally longer than the
simulated delay. Anecdotally, this is likely to be caused by contention and retries in the STM but we'll
revisit that later. The affect was a good reminder why using real time can be problematic and forced a
rethink.

Somehow, we really want to control time but with more complex semantics than the simple
StopWatch example above. In the case of the ThreadPoolTimer it effectively has to maintain
multiple stopwatches, so we'd need to control multiple instances of time!

6.1.3 The Use of ThreadLocal

The ThreadLocal class allows us to associate a variable with a particular thread, it basically
maintains a map of threads to instance variables. Because only a single thread can access a variable, it
is inherently thread-safe and doesn't really fall into a classification as either optimistic or pessimistic
control; it's just enforcing serial, single-threaded behaviour.

In testing for the race condition when calculating mean execution time, we make life easier for
ourselves if we can control the stopwatch used to time the execution from within the test. Usually, we

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 30

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

can just use something like the MovableClock class to do this, effectively mocking the stopwatch
within the test. However, the ThreadPoolTimer is required to use multiple stopwatches, one for
each thread it's responsible for timing.

For example, when the timer starts the stopwatch, it must do so for the current thread. The class
requires that the current thread be passed into the beforeExecute method in order to ensure this.
When another timer is started by calling the same method (lets say, at the same time, but from a
different thread), the class should start a new stopwatch tied to the current thread. This requirement is
largely influenced by the semantics of the java.util.concurrent.ThreadPoolExecutor which
provides the before and after extension points that we'll be using.

A basic implementation would be to associate a thread with a map, start a stopwatch and associate
it with that thread. Fortunately for us, that's exactly what ThreadLocal provides. So, assuming
the method is called with the correct parameters (see the assert below), we can just use a
ThreadLocalStopWatch for the timer instance below.

@Override

public void beforeExecute(Thread thread, Runnable task) {

 assert(Thread.currentThread().equals(thread));

 timer.start();

 // increment the total task count

}

@Override

public void afterExecute(Runnable task, Throwable throwable) {

 timer.stop();

 totalTime.add(timer.elapsedTime());

}

This still leaves the question of testing it and controlling the time. The test above uses a static
ThreadPoolTimer and so we need to be able to share an instance of a Clock between the
threads (as it will also need to be static) but maintain per-thread semantics. Sounds like a job for
ThreadLocal again.

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 31

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class ThreadLocalMovableClock implements Clock {

 private final ThreadLocal<Date> now;

 public ThreadLocalMovableClock() {

 now = new ThreadLocal<Date>() {

 @Override

 protected Date initialValue() {

 return new Date(0);

 }

 };

 }

 public ThreadLocalMovableClock(final Date date) {

 now = new ThreadLocal<Date>() {

 @Override

 protected Date initialValue() {

 return new Date(date.getTime());

 }

 };

 }

 @Override

 public Date time() {

 return new Date(now.get().getTime());

 }

 public void incrementBy(Duration time) {

 now.get().setTime(now.get().getTime() + time.inMillis());

 }

}

We can now use this to make our test more deterministic and not reliant on real time.

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 32

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class ThreadPoolTimerIntegrationTest {

 private static final ThreadLocalMovableClock clock = new ThreadLocalMovableClock();

 private static final ThreadPoolTimer timer = new ThreadPoolTimer(...);

 private static final Throwable NO_EXCEPTION = null;

 @Rule public ConcurrentRule concurrent = new ConcurrentRule();

 @Rule public RepeatingRule repeating = new RepeatingRule();

 @Concurrent (count = 50)

 @Repeating (repetition = 100)

 @Test

 public void executeTask() {

 Runnable task = newRunnable();

 timer.beforeExecute(currentThread(), task);

 clock.incrementBy(millis(400));

 timer.afterExecute(task, NO_EXCEPTION);

 Introduce.jitter();

 }

 @AfterClass

 public static void verifyCounters() {

 assertThat(timer.getNumberOfExecutions(), is(5000L));

 assertThat(timer.getMeanExecutionTime(), is(400L));

 assertThat(timer.getTerminated(), is(0L));

 }

}

To specifically test for the race condition, we should be able check the consistency of the date during
multiple updates. A test similar to the above but with assertions immediately after the updates would
be better but the tricky part is moving time forward a different amount for each thread and be able
to make meaningful assertions. The test below achieves this by manually controlling the number of
threads and iterations per thread (rather than use the ConcurrentRule and RepeatingRule and
then using the thread count to create a multiplier for the delay in the stopwatch.

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 33

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class ThreadPoolTimerRaceConditionIntegrationTest {

 private static final int threadCount = 50;

 private static final int repetitions = 100;

 private static final ThreadLocalMovableClock clock = new ThreadLocalMovableClock();

 private static final ThreadPoolTimer timer = new ThreadPoolTimer(new SynchronisingGuard(), new ThreadLocalStopWatch(clock), new AtomicLongCounter(), new AtomicLongCounter(), new AtomicMillisecondCounter());

 private static final Throwable NO_EXCEPTION = null;

 @Test

 public void executeTask() throws InterruptedException, ExecutionException {

 List<Future<?>> futures = new ArrayList<Future<?>>();

 ExecutorService pool = newFixedThreadPool(threadCount);

 for (int i = 1; i <= threadCount; i++)

 futures.add(pool.submit(newTestThread(millis(threadCount * 10))));

 for (Future<?> future : futures)

 future.get();

 shutdown(pool).waitingForCompletion(seconds(5));

 }

 private static Callable<Void> newTestThread(final Duration delay) {

 return new Callable<Void>() {

 @Override

 public Void call() throws RuntimeException {

 for (int count = 1; count <= repetitions; count++) {

 Runnable task = newRunnable();

 timer.beforeExecute(currentThread(), task);

 clock.incrementBy(delay);

 timer.afterExecute(task, NO_EXCEPTION);

 assertThat(timer.getMeanExecutionTime(), is(delay.inMillis()));

 Introduce.jitter();

 }

 return null;

 }

 };

 }

}

6.1.4 What to Guard

Having gone some way to creating tests to uncover concurrency problems, a basic implementation of
the ThreadPoolTimer might look like the following

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 34

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class ThreadPoolTimer implements ThreadPoolObserver, ThreadPoolTimerMBean {

 private final Guard guard;

 private final StopWatch timer;

 private final Counter tasks;

 private final Counter terminated;

 private final AccumulatingCounter<Duration> totalTime;

 public ThreadPoolTimer(Guard guard, StopWatch timer, Counter tasks, Counter terminated, AccumulatingCounter<Duration> totalTime) {

 this.timer = timer;

 this.tasks = tasks;

 this.terminated = terminated;

 this.totalTime = totalTime;

 this.guard = guard;

 }

 @Override

 public void beforeExecute(Thread thread, Runnable task) {

 assert(Thread.currentThread().equals(thread));

 timer.start();

 }

 @Override

 public void afterExecute(Runnable task, Throwable throwable) {

 timer.stop();

 tasks.increment();

 totalTime.add(timer.elapsedTime());

 }

 @Override

 public void terminated() {

 terminated.increment();

 }

 @Override

 public Long getNumberOfExecutions() {

 return tasks.get();

 }

 @Override

 public Long getTotalTime() {

 return totalTime.get();

 }

 @Override

 public Long getMeanExecutionTime() {

 return guard.execute(divide(totalTime, by(tasks)));

 }

 @Override

 public Long getTerminated() {

 return terminated.get();

 }

 @Override

 public void reset() {

 totalTime.reset();

 tasks.reset();

 terminated.reset();

 }

}

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 35

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

This implementation fails the above race condition test (
ThreadPoolTimerRaceConditionIntegrationTest). The use of the guard in the
getMeanExecutionTime and variable write methods ensure that writes to individual variables
are coordinated with the reads. Updates during the read are prevented but our test still fails. It turns
out we've missed something fundamental here, the guard doesn't actually protect us from specific
interleaving when the protected methods have themselves completed. The interleaving showing
diagram in Fig.XXX above is still very much possible. We'd need to coordinate read and writes access
of multiple variables in order to preserve consistent behaviour under concurrent usage.

The offending methods from the the original implementation are shown below.

public void afterExecute(Runnable task, Throwable throwable) {

 timer.stop();

 tasks.increment();

 totalTime.add(timer.elapsedTime());

}

public Long getMeanExecutionTime() {

 return guard.execute(divide(totalTime, by(tasks)));

}

This shows that although the three lines in the afterExecute method are individually thread safe,
they do not preserve any aromaticity with respect to each other. The task counter and total time can be
updated independently as in diagram Fig.XXX above. We can fix this by employing the same gaurd
the getMeanExecutionTime method uses as below.

public void beforeExecute(Thread thread, Runnable task) {

 assert (Thread.currentThread().equals(thread));

 timer.start();

}

public void afterExecute(Runnable task, Throwable throwable) {

 timer.stop();

 guard.execute(new Callable<Void, RuntimeException>() {

 @Override

 public Void call() throws RuntimeException {

 tasks.increment();

 totalTime.add(timer.elapsedTime());

 return null;

 }

 });

}

public Long getMeanExecutionTime() {

 return guard.execute(divide(totalTime, by(tasks)));

}

The implementation now passes our test. Access to individual variables is now coordinated using the
guard as shown in the gorilla UML below. The diagram is trying to indicate that the updates and the
reads (along with the calculation) are now all protected.

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 36

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

We can further tidy up the code by using instances of Callable classes rather than the anonymous
version like this.

public void afterExecute(Runnable task, Throwable throwable) {

 timer.stop();

 guard.execute(

 allOf(

 increment(tasks),

 add(timer.elapsedTime(), to(totalTime))

)

);

}

6.1.5 Summary

The development steps for the ThreadPoolTimer followed the now familiar steps.

1 Develop unit test to drive out the behaviour of the timer in a non-concurrent usage (
ThreadPoolTimerTest)

2 Develop the basic timer class to pass the test
3 Develop the a integration test running in a concurrent context (
ThreadPoolTimerIntegrationTest) to identify individual elements that require
concurrency control.

4 Extend the class, make the test pass. Our example forced the use of Counter variables which
could be made thread safe.

5 Identify any collaborating elements that require concurrency control, formulate as a test (
ThreadPoolTimerRaceConditionIntegrationTest)

6 I n s t r u m e n t i n g T h r e a d T i m i n g s u s i n g T h r e a d P o o l T i m e r 37

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

6 Extend the class, make the test pass. Our example forced guarding collaborating variables rather
than making individual variables thread safe.

Interestingly, to some degree steps 3. and 5. require some analysis from the developer before the test
can be written. For step 1., the test can genuinely be written first to drive out behaviour but for the
other testing steps, an understanding of the concurrency loop holes is required so that a test can be
tailored to expose them. This is an uncomfortable situation for the TDD practitioner to be in but with
concurrency tests, it often boils down to spotting the holes first then filling them rather than letting the
tests expose the holes for you.

7 I n s t r u m e n t i n g T h r o u g h p u t 38

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

7 Instrumenting Throughput
...

7.1 Throughput
A general purpose interface to expose throughput might look like the following.

public interface ThroughputMBean {

 Double getRequestsPerSecond();

 Long getTotalRequests();

}

Any implementation would require some form of timer to record elapsed time and the ability to record
the number of requests made. If we think about the thing that we want to observe as a request, we can
phrase an interface to record the start and finish points as the following.

public interface RequestObserver {

 Request started();

 public interface Request {

 Duration finished();

 }

}

With the intention of using an instance to instrument before / after points something like the
following.

public void doGet(HttpServletRequest request, HttpServletResponse response) {

 Request request = throughput.started();

 try {

 doSomeWork();

 } finally {

 request.finished();

 }

}

In this way, we're able to indicate to some component a request has started and provide a callback
object to indicate when its finished. No mention of a timer and lots of "tell, don't ask" which means
the component is free to decide what to do with the information. A basic implementation might look
like this.

7 I n s t r u m e n t i n g T h r o u g h p u t 39

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class Throughput implements RequestObserver, ThroughputMBean {

 private final StopWatch timer;

 private final Counter count;

 private final AccumulatingCounter<Duration> totalTime;

 public Throughput(StopWatch timer, Counter count, AccumulatingCounter<Duration> totalTime) {

 this.timer = timer;

 this.count = count;

 this.totalTime = totalTime;

 }

 @Override

 public Request started() {

 timer.start();

 return new Request() {

 @Override

 public Duration finished() {

 count.increment();

 timer.stop();

 totalTime.add(timer.elapsedTime());

 return timer.elapsedTime();

 }

 };

 }

 @Override

 public Double getRequestsPerSecond() {

 return (double) count.get() / ((double) totalTime.get() / 1000);

 }

 @Override

 public Long getTotalRequests() {

 return count.get();

 }

}

A unit style test, ensuring just the behaviour and not thread safety, might look like the following.

7 I n s t r u m e n t i n g T h r o u g h p u t 40

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class ThroughputTest {

 private final StopWatch timer = new StopWatchStub();

 private final Throughput throughput = new Throughput(timer, new LongCounter(), new AtomicMillisecondCounter());

 @Test

 public void calculateThroughputWithNoRequests() {

 throughput.started();

 timer.setElapsedTime(millis(355));

 assertThat(throughput.getRequestsPerSecond(), is(NaN));

 }

 @Test

 public void calculateThroughput() throws Exception {

 makeRequestLasting(millis(250));

 makeRequestLasting(millis(150));

 makeRequestLasting(millis(50));

 makeRequestLasting(millis(300));

 assertThat(throughput.getRequestsPerSecond(), is(5.333333333333333));

 }

 private void makeRequestLasting(Duration duration) {

 RequestObserver.Request request = throughput.started();

 timer.setElapsedTime(duration);

 request.finished();

 }

}

In terms of thread safety, the class depends on a StopWatch and two Counters. If these are
themselves thread safe implementations, then the following test will pass. This highlights that a class
can be thread safe in two ways, the first is that its composite variables are thread safe in isolation and
the second is that the class itself is free from race conditions and is consistent with any invariants and
so on (see the Conclusions section). The following test only tests that the variables are thread safe in
isolation is so much as any race condition possible in the getRequestsPerSecond isn't exercised.

7 I n s t r u m e n t i n g T h r o u g h p u t 41

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class ThroughputIntegrationTest {

 private static final ThreadLocalMovableClock clock = new ThreadLocalMovableClock();

 private static final StopWatch timer = new ThreadLocalStopWatch(clock);

 private static final Throughput throughput = new Throughput(timer, new AtomicLongCounter(), new AtomicMillisecondCounter());

 @Rule public ConcurrentRule concurrent = new ConcurrentRule();

 @Rule public RepeatingRule repeating = new RepeatingRule();

 @Concurrent (count = 10)

 @Repeating (repetition = 100)

 @Test

 public void recordThroughput() {

 RequestObserver.Request request = throughput.started();

 clock.incrementBy(millis(250));

 request.finished();

 }

 @AfterClass

 public static void verify() {

 Long requests = throughput.getTotalRequests();

 Double requestsPerSecond = throughput.getRequestsPerSecond();

 assertThat(requests, is(1000L));

 assertThat(requestsPerSecond, is(4D));

 }

}

8 I n s t r u m e n t i n g B l o c k i n g R a t i o 42

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

8 Instrumenting Blocking Ratio
...

8.1 Contention Monitoring and Block/Wait Counts
When making comparisons between the implementations, it may be useful to understand any
contention between competing threads on resources. For us, we're interested in contention when
accessing shared memory. When shared memory is protected (or serialised) by a single guard, several
concurrent requests will contend for exclusive access to the guard. A contention ratio then, may be
useful in understanding the potential strain a protected resources could come under.

A simple contention ratio then can be seen as

 number of concurrent calls to a shared memory resource : number of guards

For example, twenty concurrent calls to a single synchronized block would result in a ratio of

 20:1

in other words, the single lock could service only 5% of the time.

However, this is not an easy thing to predict or measure ahead of time. We're not going to be able
to tell how many calls to a shared resource are going to be made at precisely the same time. We can
however, measure the affect of some implied contention. For example, we can measure the number
of failed guarded calls and compare these to the number of success calls under different loads. The
implication here being that the throughput (the number of requests the system is going to be able
to make) will be affected by the contention ratio and by extension the effectiveness of the guard
implementation. A guard that processes multiple requests quickly will positively affect throughput
compared to a guard that blocks excessively, which will slow things down. At least, that's the theory.

However, because of the way in which our guards protect a shared resource, we can't just monitor
the number of failed guarded calls and use it as an indicator of contention. For example, a Software
Transaction Memory guard might retry dozens of time before failing, whereas a Lock based solution
may fail on the first attempt and never retry. Both were asked just once to attempt the call, but the
behaviour of the implementation dictates the number of retries. What number represents the request
count, the original request (one) of the number of retries (dozens)?

So, to paint a fuller picture, we need to understand our system in terms of contention (how likely is
it that a service is going to be heavily contended) as well as how quickly the service can process the
contention (both in terms of processing time and time spent co-ordinating access to shared memory)
and the observable outcome to the throughput of the service. In summary, if shared memory isn't
contended (under load), it's likely that co-ordinating efforts are having little affect on the throughput.
We want to be able to stretch the system to simulate contention in order to observe the affect our
guards have on throughput.

Lets paraphrase some of these assumptions to make things clearer

• we want to exaggerate contention in order to exaggerate the affect of a Guard
implementation (so that we can evaluate their use)

• we can increase the contention by increasing the load (number of concurrent requests) made
to a service

• we can measure a block/wait count for our Guard implementations
• if we tweak the load so that block/wait counts are similar, a measure of throughput

indicates effectiveness of the Guard (as well as the intermediate code on the critical path)

8 I n s t r u m e n t i n g B l o c k i n g R a t i o 43

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

8.1.1 The Blocking Coefficient

We introduced the idea of measuring blocked calls or waits above in order to better interpret various
measures to evaluate our Guards. We can formalise the idea into talking about a blocking coefficient.
A coefficient is some multiplicative factor, a constant term affecting a calculation. In our case, the
blocking coefficient is amount of time not spent servicing a task (blocking or waiting) expressed as a
percentage (or fraction) of the total time.

The blocking coefficient as a fraction is a number between 0 and 1 to indicate how much a particular
task is blocking (or waiting). Zero indicates CPU intensive work (no blocking) and a number close to
one represents a heavily blocked task. A fully blocked task would have 1 as a coefficient.

For example, if a task is idling (waiting or blocked) 80% of the time and so actually processing 20%
of the time, the blocking coefficient is 0.8 (80 / 100).

In terms of our Guard implementations, we're able to monitor;

1 Blocking with Pessimistic (synchronized) Control - the number of requests (or time)
blocked whilst attempting to acquire an object monitor.

2 Waiting with Optimistic (Locks) Control - the number of requests (or time) made to wait
whilst attempting to acquire a lock.

3 Contention with Optimistic (Software Transactional Memory) Control - the number of
aborted atomic updates (this assumes an abort is the result of an attempt to access a transactional
reference which has already been accessed and not some other runtime exception).

In all cases, we can use these values along with total request counts to give us our coefficient. For
example, the waiting or blocked count divided by the sample count where the sample count is equal
to the number of requests made. This gives the ratio of failed requests (due to blocked or waiting). For
example, if 10 calls out of 100 failed, the ratio would be 0.1 (10 / 100).

We can also use the waiting or blocked time divided by the CPU (service) time. This produces a
similar indication as above but this time in terms of time. For example, if thread A was busy for
1000 milliseconds and waiting for 100 milliseconds, the result would be 0.1 milliseconds (100
microseconds).

See Appendix A for some additional background around why and how threads will enter blocked or
waiting states.

8.1.2 Blocking in Pessimistic Concurrency Control

To begin with we're interested in measuring the blocking coefficient caused by the waiting on monitor
acquisition. We can use the Java class ThreadInfo to get information about a particular thread
including the block count (the number of times the thread has been in the BLOCKED state) and total
elapsed time a thread has been blocked (again, the total time spent in the BLOCKED state). The state
transition to BLOCKED is only possible when a thread is waiting to acquire (or re-acquire) an object's
monitor.

Unfortunately, the ThreadInfo class doesn't distinguish between the specific monitor a thread is
blocked waiting to acquire but we can make some assuptions and provide an approximation using the
following code.

8 I n s t r u m e n t i n g B l o c k i n g R a t i o 44

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class BlockingRatio {

 private final Counter count = new AtomicLongCounter();

 private final Map<Long, Long> blocked = new ConcurrentHashMap<Long, Long>();

 private final ThreadMXBean jvm;

 public BlockingRatio(Factory<ThreadMXBean> factory) {

 jvm = factory.create();

 if (jvm.isThreadContentionMonitoringSupported())

 jvm.setThreadContentionMonitoringEnabled(true);

 }

 public void sample() {

 count.increment();

 blocked.put(currentThread().getId(), getBlockedCount(currentThread()));

 }

 public Double get() {

 double ratio = 0;

 for (Long blocked : this.blocked.values())

 ratio += (double) blocked / (double) count.get();

 return ratio;

 }

 private long getBlockedCount(Thread thread) {

 return jvm.getThreadInfo(thread.getId()).getBlockedCount();

 }

}

Here, we assume that client will "sample" blocked calls at appropriate times which is basically during
load. We also brush over the fact that the instrumentation itself may influence the results. We use an
AtomicLongCounter and ConcurrentHashMap as they both offer optimistic thread safety (with
the implication being that they are fast). We also defer maintaining the consistency of updating count
and blocked together (for example, by using a Guard) for the same reason; namely we're favouring
performance over accuracy. We use a factory to create the ThreadMXBean in order to be able to write
unit style tests without using real JVM thread metadata.

As we are interested in monitoring contention around locks, we can conveniently use the
BlockingRatio class from within a custom Guard implementation. The guard is our abstraction
for protecting resources and we're interested in understanding contention at this point. As we're also
interested in the total number of requests, we can employ the Throughput class defined previously in
the same place. For example,

8 I n s t r u m e n t i n g B l o c k i n g R a t i o 45

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class ContentionMonitoringGuard implements Guard, ContentionMonitoringGuardMBean {

 private final BlockingRatio contention = new BlockingRatio(new JmxThreadMxBean());

 private final Throughput throughput;

 public ContentionMonitoringGuard(Throughput throughput) {

 this.throughput = throughput;

 }

 @Override

 public <R, E extends Exception> R execute(Callable<R, E> callable) throws E {

 synchronized (this) {

 RequestObserver.Request request = throughput.started();

 try {

 return callable.call();

 } finally {

 request.finished();

 contention.sample();

 }

 }

 }

 @Override

 public Boolean guarding() {

 return true;

 }

 @Override

 public Double getContentionRatio() {

 return contention.get();

 }

 @Override

 public Double getRequestsPerSecond() {

 return throughput.getRequestsPerSecond();

 }

 @Override

 public Long getTotalRequests() {

 return throughput.getTotalRequests();

 }

}

We include the throughput as well as blocking coefficient so that we can adjust the load later.

An instance of this guard will be used to protect some shared resource and as such will sample the
current thread's block count just before releasing it's monitor. A thread which manages to execute the
guarded section (the call to callable.call()) without being blocked will record no contention.
If however, whilst that thread is executing the guarded section, another attempts to do the same, it
will block until the first has released the monitor. In this case, the second thread will record a blocked
attempt when executing the contention.sample() method. A thread dump showing the kind of
blocking behaviour that ContentionMonitoringGuard would capture as contention is shown
below.

8 I n s t r u m e n t i n g B l o c k i n g R a t i o 46

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

Thread Thread-0@9: (state = RUNNABLE)

 ...

 - bad.robot.pessimistic.ContentionMonitoringGuardTest$1.call(ContentionMonitoringGuardTest.java:14)

 - bad.robot.pessimistic.ContentionMonitoringGuard.execute(ContentionMonitoringGuard.java:36)

 - bad.robot.pessimistic.ContentionMonitoringGuardTest$3.run(ContentionMonitoringGuardTest.java:36)

 - java.lang.Thread.run(Thread.java:722)

Thread Thread-1@10: (state = BLOCKED)

 - bad.robot.pessimistic.ContentionMonitoringGuard.execute(ContentionMonitoringGuard.java:34)

 - bad.robot.pessimistic.ContentionMonitoringGuardTest$3.run(ContentionMonitoringGuardTest.java:36)

 - java.lang.Thread.run(Thread.java:722)

Thread-0 acquired the guard's monitor and is executing (it's in the RUNNABLE state)
whilst Thread-1 is BLOCKED at the execute call. When Thread-1 finally continues the
ContentionMonitoringGuard would indicate a contention ratio of 0.5. Half the requests were
contended.

8.1.3 Waiting in Locks

...

8.1.4 Contention in Software Transaction Memory

Using hooks into the Multiverse STM library, we can observe the number of aborts vs the number
of successful commits giving us the contention ratio. Multiverse allows us to add a deferred task to
execute on successful commit and a compensating task on aborts. Implementing basic tasks using our
existing Counters, we can wire up a basic contention monitoring Guard. For example, we can re-use
the Increment class shown below to increment Counters on abort or on commit events.

public class Increment<T extends Counter> implements Callable<Void, RuntimeException> {

 private final Counter counter;

 public static <T extends Counter> Increment<T> increment(T counter) {

 return new Increment<T>(counter);

 }

 private Increment(T counter) {

 this.counter = counter;

 }

 @Override

 public Void call() throws RuntimeException {

 counter.increment();

 return null;

 }

}

The increment functionality is a Callable, so if we adapt it to either a CompensatingTask or
DeferredTask,

8 I n s t r u m e n t i n g B l o c k i n g R a t i o 47

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public final class CallableAdaptors {

 public static CompensatingTask onAbort(final Callable<?, RuntimeException> callable) {

 return new CompensatingTask() {

 @Override

 public void run() {

 callable.call();

 }

 };

 }

 public static DeferredTask onCommit(final Callable<?, RuntimeException> callable) {

 return new DeferredTask() {

 @Override

 public void run() {

 callable.call();

 }

 };

 }

}

we can then schedule increment behaviour on the events using our "runner" (and the infrastructure
supplied by Multiverse in the STMUtils class) below.

public class RunAtomically<R, E extends Exception> extends Atomic<R> {

 private final Callable<R, E> callable;

 private final DeferredTask onCommit;

 private final CompensatingTask onAbort;

 public static <R, E extends Exception> R runAtomically(Callable<R, E> callable) {

 return new RunAtomically<R, E>(callable, new DoNothingDeferredTask(), new DoNothingCompensatingTask()).execute();

 }

 public static <R, E extends Exception> R runAtomically(Callable<R, E> callable, DeferredTask onCommit, CompensatingTask onAbort) {

 return new RunAtomically<R, E>(callable, onCommit, onAbort).execute();

 }

 RunAtomically(Callable<R, E> callable, DeferredTask onCommit, CompensatingTask onAbort) {

 this.callable = callable;

 this.onCommit = onCommit;

 this.onAbort = onAbort;

 }

 @Override

 public R atomically() {

 try {

 StmUtils.scheduleDeferredTask(onCommit);

 StmUtils.scheduleCompensatingTask(onAbort);

 return callable.call();

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

 }

}

Finally, the Guard can use the counters to work out contention when using the "runner" to
runAtomically. For example,

8 I n s t r u m e n t i n g B l o c k i n g R a t i o 48

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

public class ContentionMonitoringStmGuard implements Guard, ContentionMonitoringStmGuardMBean {

 private final Counter aborts = new AtomicLongCounter();

 private final Counter commits = new AtomicLongCounter();

 @Override

 public <R, E extends Exception> R execute(Callable<R, E> callable) throws E {

 return runAtomically(callable, onCommit(increment(commits)), onAbort(increment(aborts)));

 }

 @Override

 public Boolean guarding() {

 return true;

 }

 @Override

 public Double getContentionRatio() {

 return (double) aborts.get() / (double) commits.get();

 }

}

8.1.5 Choosing the Optimal Number of Threads

As we saw earlier, if we can keep the blocking coefficient in a similar range by adjusting the load, we
can make stronger inferences against the resulting throughput. However, this isn't the whole story. We
also want to try and tune the system so that it's able to utilise the system processors efficiently. It may
therefore make sense to have a guide when deciding how many threads to use when testing.

8.1.5.1 CPU Bound Tasks

For CPU bound tasks, Goetz (2002, 2006.) recommends

threads = number of CPUs + 1

Which is intuitive as if a CPU is being kept busy, we can't do more work than the number of CPUs.
Goetz purports that the additional CPU has been shown as an improvement over omitting it (2006.
pp.XXX), presumably helping with thread context switching.

8.1.5.2 IO Bound Tasks

Working out the optimal number for IO bound tasks is less obvious. During an IO bound task, a CPU
will be left idle (waiting or blocking). This idle time can be better used in initiating another IO bound
request.

Subramaniam (2011, p.31) describes the optimal number of threads in terms of the following formula.

threads = number of cores / (1 – blocking coefficient)

And Goetz (2002) describes the optimal number of threads in terms of the following.

threads = number of cores * (1 + wait time / service time)

Where we can think of wait time / service time as a measure of how contended the task is.

8 I n s t r u m e n t i n g B l o c k i n g R a t i o 49

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

When we use equivalent terms in Subramaniam‘s expression we can begin to form the proposition
that both formulas are equivalent. Starting with Goetz’s formula, we assert that w+s=1 and remove the
service time (s) from Goetz’s formula giving the following

We can continue by multiplying both sides by 1-w reducing the right hand side to c before reversing
the operation and revealing Subramaniam’s expression.

As we were able to show that Subramaniam and Goetz agree on the number of threads to use for IO
bound tasks, we'll be confident in our choices of thread pool sizes when it comes to performance
testing later.

9 C o n c l u s i o n s 50

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

9 Conclusions
...

9.1 Conclusions
...

9.1.1 General Comments / Observations

In the pessimistic world, contended locks obviously block. The misconception that locking is
expensive comes from this but in fact, uncontended locks add only tens of nanoseconds (biased
locking at around 2-4 clock cycles and fast user-model locks otherwise). This is all highly optimised
by the JVM as synchronisation has been so common in development. Things like lock elision, escape
analysis, adaptive locking and lock coarsening all aim to correct the oversights of the developer.
These optimisations and the support for the pessimistic model from the language have set its place
and we won't be seeing it go away for some time yet.

From some guy

9.1.2 Fine Grained Concurrent Components

Stressing components like the instrumentation classes in a concurrent context demonstrates typical
concurrency control of fine-grained shared memory. It does not, however, demonstrate coarse grained
concurrency like the type you might expect when using business components. What I mean here is
that when two or more business processes are run in parallel, the same kind of problems may appear
as when we access fine-grained shared memory. The consistency of critical sections may still need to
be preserved and race conditions between processes may still exist.

This discussion hasn't focused on this at all.

9.1.3 Pessimistic / Lock Based Synchronisation

As we noted in the Shared Memory Model section, pessimistic solutions revolve around using
intrinsic locks, essentially using the synchronized keyword. In looking at solutions using this
approach, it's important to be aware of some drawbacks associated with it, namely;

• Lock's can block indefinitely, causing non-recoverable liveliness problems such as deadlock.
• Various up-front strategies must be employed to avoid situations above (for example, ensuring

consistent lock acquisition ordering to avoid deadlock.

9.1.4 Making Classes Thread Safe

As we've seen from different styles of tests in the Solution section, we can look at class level thread
safety as having two dimensions. A class can be thread safe, in terms of

1 its composite variables. Variables which are available for read and write access from multiple
threads need to be protected against lost updates (visibility) and write consistency. The Counter
implementations when used in isolation are a good example here.

We can protect these at the class level or at the client level. In our examples, it's interesting
to note that we haven't needed to implement a synchronized version of a Counter instead
favouring client Guard implementations to protect access. We have implemented optimistic
versions (for example, AtomicLongCounter and StmAtomicLongCounter).

2 the relationships between composite variables. Any shared variables from 1. above that
collaborate with others should be considered in terms of atomicity. It's likely that any interaction
should be executed under a Guard. In the same way as a check then set operation is subject to

http://www.azulsystems.com/blog/wp-content/uploads/2011/03/2011_WhatDoesJVMDo.pdf

9 C o n c l u s i o n s 51

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

race conditions, any collaboration with shared variables is also open to modifications during the
execution of that collaboration which may subvert the outcome.

It may be worth considering accuracy vs performance here though as sometimes the consistency
isn't always required. An example might be the reset method of ThreadCounter where we've
chosen to reset the active and create threads together preventing modifications to either until the
reset is complete but in ThreadPoolTimer we've chosen to reset variables independently and
allow modifications.

In building out the implementations, I naturally feel into a rhythm that fits into this way of looking at
it. This is outlined below.

1 Develop a non-threaded behavioural unit test to help drive out the behaviour of your class.
2 Build the class to pass the test.
3 Develop a threaded integration style test to identify the composite variables of the class that

represent shared state (point 1. above).
4 Implement basic protection for the composite variables.
5 Develop a threaded integration style test to highlight collaborating elements that require

additional protection to ensure consistency of behaviour (maintaining invariants for example)
and avoid race conditions.

6 Implement addition protection against the relationships of the elements, this is a good candidate
for using a Guard.

1 0 R e f e r e n c e s 52

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

10 References
...

10.1 References

1 Christopher, T. W. and Thiruvathukal, G. K., 2001. High Performance Java Platform
Computing. Sun Microsystems/Prentice Hall.

2 Kung, H. T. and John T. Robinson. June 1981. On optimistic methods for concurrency control.
ACM Transactions on Database Systems, Vol. 6, No. 2.

3 Anon. 2011. Concurrency Control. Wikipedia, [online] Available at: http://en.wikipedia.org/
wiki/Concurrency_control

4 Anon. 2011. Non-blocking algorithm. Wikipedia, [online] Available at: http://en.wikipedia.org/
wiki/Non-blocking_synchronization

5 Moore, G. 1965. Cramming More Components Onto Integrated Circuits. Electronics Magazine.
6 Moore, G. 1975. Progress in Digital Integrated Electronics. IEEE, IEDM Tech Digest., pp.

11-13
7 Amdahl, G.M. 1967, Validity of the Single-Processor Approach to Achieving Large-Scale

Computing Capabilities. Proc. Am. Federation of Information Processing Societies Conf., AFIPS
Press., pp. 483-485.

8 Gustafson, J. L. 1988. Reevaluating Amdahl’s Law. Comm. ACM., pp. 532-533.
9 Gosling, J. Joy, B. Steele, G. and Bracha, G. 2005. Java Langauge Specification 3rd Edition.

Addison Wesley.
10Goetz, B. 2002. Java theory and practice: Thread pools and work queues. IBM DeveloperWorks,

[online] Available at http://www.ibm.com/developerworks/java/library/j-jtp0730/index.html
11Goetz, B. Peierls, T. Bloch, J. Bowbeer, J. Holmes, D. and Lea, D. 2006. Java Concurrency in

Practice. 1st Edition. Addison Wesley
12Dice, D. Shalev, O and shavit, N. 2006. Transactional Locking II. 20th International Symposium

on Distributed Computing (DISC). pp. 194-208.
13Lev, Y. Luchangco, V. Marathe, V. J. Moir, M. Nussbaum, D. and Olszewski, M. 2009. Anatomy

of a Scalable Software Transactional Memory In the proceedings of TRANSACT`09: The 4th
ACM SIGPLAN Workshop on Transactional Computing Raleigh.

14Veentjer, P. 2011. Multiverse (0.7) Reference Manual. [online] Available at: http://
multiverse.codehaus.org/manual/index.html

http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Non-blocking_synchronization
http://en.wikipedia.org/wiki/Non-blocking_synchronization
http://www.ibm.com/developerworks/java/library/j-jtp0730/index.html
http://multiverse.codehaus.org/manual/index.html
http://multiverse.codehaus.org/manual/index.html

1 1 A p p e n d i c e s 53

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

11 Appendices
...

11.1 Appendices

1 2 A p p e n d i x A 54

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

12 Appendix A
...

12.1 Classification of Java Concurrency Control Mechanisms
For the purposes of this discussion, I've classified various options as either optimistic or pessimistic.

12.1.1 Pessimistic

Class or keyword Notes

synchronized Exclusive lock is inherently pessimistic. Client
threads unable to acquire a object's monitor will
enter the BLOCKED state.

ReentrantLock Exclusive locks but with additional functionality
meaning they can offer non-blocking semantics
(see below). When a client thread in unable
to acquire a lock, it will enter the WAITING
or TIMED_WAITING state rather than
BLOCKED.

ThreadLocal Although avoiding contention, when using
ThreadLocal, it can be argued that we're
expecting the potential for contention and
electing to side-step conflicts. As such, it offers
no explicit collision detection or recovery as
described in the Optimistic Concurrency Control
section.

Pessimistic

12.1.2 Optimistic

Technique or keyword Notes

Software Transactional Memory Often STM offers automatic retry semantics.

volatile Atomic read and write (Gosling, et al. 2005.
Section. 17.7). A write to a volatile field
happens-before every subsequent read of that
field (Gosling, et al. 2005. Section. 17.4.5).

AtomicInteger and others Based on CAS, lock-free algorithm although
on some platforms may involve some form of
internal locking.

1 2 A p p e n d i x A 55

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

ReentrantLock Non-blocking when used to attempt to acquire
a lock (using tryLock) preceded with a
conditional or allowing the lock to be interrupted
(using lockInterruptibly) or with a timeout
(using tryLock(long, TimeUnit)). In
this mode, Locks will not block in so much
as client threads will not enter the BLOCKED
state if unable to acquire the lock but instead
will go into WAITING or TIMED_WAITING
states. This is the difference between waiting to
acquire a lock due to synchronized or wait
as apposed to something that ends up calling a
park method. See footnote for more details.

ReentrantLock (and
ReentrantReadWriteLock) is a type of
ownable syncrhoniser implying that they will
not force client threads to be BLOCKED but
will force waiting instead. This can have all the
same detrimental affects as blocking in terms of
liveliness and performance. See ThreadMXBean.

Optimistic

12.1.3 When Threads can be Blocked Waiting

With reference to non-blocking algorithms, a blocked thread is one that to some degree can not
progress when waiting for some other thread to release a mutex that it would like to acquire. Java's
documentation is reasonable consistent with this definition but it doesn't imply that a thread that is
"blocked" is actually in the state BLOCKED. Java itself describes situations where a thread can be
blocked waiting, meaning the following (taken from the JavaDoc).

A thread can be blocked waiting for one of the following:

• an object monitor to be acquired for entering or reentering a synchronization block/method. The
thread is in the BLOCKED state waiting to enter the synchronized statement or method.

• an object monitor to be notified by another thread. The thread is in the WAITING or
TIMED_WAITING state due to a call to the Object.wait method.

• a synchronization object responsible for the thread parking. The thread is in the WAITING or
TIMED_WAITING state due to a call to the LockSupport.park method. The synchronization
object is the object returned from LockSupport.getBlocker method. Typically it is an
ownable synchronizer or a Condition.

12.1.4 How Threads become blocked

A summary of how threads can enter the various states is offered below.

State As a result of calling

BLOCKED synchronized (when monitor is already owned)

http://download.oracle.com/javase/6/docs/api/java/lang/management/ThreadInfo.html#getLockInfo()

1 2 A p p e n d i x A 56

© 2 0 1 2 , T o b y W e s t o n • A L L R I G H T S R E S E R V E D .

TIMED_WAITING Thread.sleep(duration)
Object.wait(timeout)
Thread.join(timeout)
LockSupport.parkNanos(timeout)
LockSupport.parkUntil(timeout)

WAITING Object.wait()
Thread.join()
LockSupport.park()

12.1.5 Thread Pool Tuning

	Table of Contents
	Introduction
	Shared Memory
	Problem Definition
	Solutions
	Instrumenting Thread Usage using ThreadCounter
	Instrumenting Thread Timings using ThreadPoolTimer
	Instrumenting Throughput
	Instrumenting Blocking Ratio

	Conclusions
	References
	Appendices
	Appendix A

