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1 Introduction 1

Introduction

1.1 Introduction

1.1.1 Abstract

In shared memory models, multiple concurrent processes may compete for access to common
memory and so must provide ways to protect the integrity of that shared memory. The concurrency
control mechanisms to achieve this can be categorised as either optimistic in nature or pessimistic

( Concurrency Control, Anon., 2011). Languages such as Java have typically offered pessimistic
approaches such as guarded memory. Guarded memory requires alot of effort from the developer

to get right, is difficult to prove correct and is often difficult to implement whilst maintaining

good object oriented practices. Optimistic mechanisms, specifically Software Transactional
Memory, purport to smplify the development process but as arelatively new approach has had little
mainstream adoption.

Asthe acceleration of processor power predicted by Moore's Law reaches its peak, the utilisation of
multi-core processors predicted by Amdahl's Law becomes more and more important (Moore, 1975;
Amdahl 1967). With the current trend towards functional / object oriented hybrid languages and their
impact on concurrent programming, it seems obvious that concurrency is set to be an even bigger part
of modern software devel opment.

Concurrent programming has always been difficult, mostly because of the shared memory model and
traditional approaches guarding it. This paper aims to explore the problems, describing characteristics
of concurrency control in shared memory systems, comparing optimistic and pessimistic approaches
using areal world example and comment on the current state and appropriateness of technology
choices.

Distributed models avoid contention as they don't actually share memory, each process works on
itsown local heap. Techniques such as the actor model or distributed message passing effectively
simulate a distributed model and are out of scope for this discussion.

1.1.2 Goals

 Describe the shared memory model and appropriate concurrency control mechanisms.

» Present aternative implementations of a common concurrency problems; typical pessimistic,
lock based synchronisation solutions, modern (non-blocking) optimistic based solutions and
optimistic, software transactional memory based sol ution.

» Demonstrate a real-world usage examples, to help better understand the concurrency control
mechanisms and provide a reference to interested readers.

* Present conclusions/ experience report.

©2012, Toby Weston « ALL RIGHTS RESERVED.
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Shared Memory

2.1 Shared Memory Model

Sharing common memory allows us to build software that works on common data structures, it allows
us to utilise modern architectures to solve common problems without having to copy common data
between processes (Christopher and Thiruvathukal 2001, p.3).

2.1.1 The Java Memory Model

The part of the Java Specification (Godling, et al. 2005) concerned with VM implementations
of shared memory is refereed to as the Java Memory Model. It basically describes how any VM
implementation should behave under certain conditions. Interestingly for us, it's particularly
concerned with describing behaviour under multi-threaded conditions.

In modern systems, the order in which instructions are actually executed isn't necessarily the same
order that they are arranged at source. The compiler, processors and memory subsystems may reorder
execution for best performance. In fact, on multi-core platforms, the processors will likely have their
own local cache which may or may not be in-sync with main memory. Without some synchronising
mechanism, when the datain main memory is shared, there is no guarantee that each processor

will see an up-to-date value. This turns out to be a good example of why we need the Java Memory
Model. This part of the specification defines the behaviour of such synchronisation mechanisms and
behaviour. For example, it definesthat thevol at i | e keyword should indicate to the VM that some
shared state is not eligible for caching in processor-local caches and so ensure inter-thread visibility.

Another important part of the Java Memory Model defines as-if-serial semantics. Here, the VM
isrequired to produce the same results asif serial execution were observed, regardless of the actual
optimisations and re-ordering performed, at least within asingle thread. The as-if-serial semantics
however, don't prevent this guaranteed accuracy between threads and so the Java Memory Model has
to prescribe alternative guarantees. These guarantees allow us to reason about concurrent program
execution and underpin Java's concurrency control mechanisms. It's what enforces consistent
behaviour across threads when entering or leaving asynchr oni zed block for example.

It'sinteresting to note that like any specification, vendors are free to ignore the Java Memory Model.
There are certainly JVM implementations that may not respect the volatile keyword for example.

2.1.2 Pessimistic Concurrency Control

Being pessimistic about how to control access to shared memory means assuming the worse. It
assumes that access to shared memory will be contended and so above all else, access must be
serialised in some way so that only one accessis alowed at any given time. Java provides plenty
of mechanisms to achieve this such asthe synchr oni zed keyword, locks and other high level
mechanisms such as barriers and semaphores. They usually rely on co-operation within the code to
work correctly. For example, all potential accessors must agree to participate in the specific control
mechanism used. Failing to spot the need to participate in a given control mechanism is often the
cause of correctness problems in concurrent systems.

For the purposes of this discussion, we can summarise pessimistic control aslock based. Locking
usually implies blocking behaviour when waiting for alock to become free.
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2.1.3 Optimistic Concurrency Control

An optimistic approach to concurrency control on the other hand takes amore liberal view on things.
How likely isit that shared memory will actually be contented really? What if we don't assume the
worse but instead assume that conflicts are relatively rare? In this case we can essentially leave shared
memory unguarded but provide mechanisms to spot collisions and provide failure and recovery
semantics. Database systems have provided these mechanisms for some time (Kung and Robinson,
1981) with most popular ORM mapping tools including Hibernate offering implementations.

Software Transaction Memory is an optimistic aternative to lock based control to shared memory.
It provides atomicity and isolation schematics similar to database transactions. Consistency is
maintained by the developer just asin the pessimistic world but by providing the building blocks,
consistency is supported (if not guaranteed). Durability however, can not be supported as ultimately,
any successful transaction's results are stored in volatile memory the VM can not ensure they are
preserved.

2.1.4 Non-Blocking Algorithms; The Grey Area

As mentioned, locking usually implies blocking behaviour which can have a knock-on affect to
performance and overall progress. However, non-blocking algorithms are available as an aternative
to strict (mutually exclusive) locking when accessing shared memory. Non-blocking algorithms
guarantee either per-thread progress (wait-free) or system wide progress (lock-free) (Goetz et al,
2006, p. 329; Non-blocking algorithm, Anon., 2011) and are often cited as offering better scalability
than lock based equivalents (Goetz 2006, pp. 326-329, 336).

Usually, non-blocking algorithms require low level support for atomic read-modify-writes (such as
compare-and-swap or load-link/store-conditional). The performance of equivalent implementations
not using these primitives has traditionally been poor. More recently however, Software Transactional
Memory offers asimilar yet higher level abstraction when building non-blocking code whilst
anecdotally offering good performance. Low level non-blocking constructs are usually used to build
performant data structures (queues, stacks, hash tables etc) asfound inthej ava. uti |l . concurrent
package.

As Goetz (2006, p. 321) points out, compare-and-swap is an optimistic technique so for the purpose
of this discussion, where do the Java classes using compare-and-swap fit in? In terms of classifying
as either pessimistic or optimistic, traditional control structures providing serial access (such as
synchroni zed and wai t / not i fy) are certainly pessimitic. Emerging techniques such as Software
Transactional Memory are clearly optimistic which just leaves the newer (post 1.5) constructs
availableinthej ava. util . concurrent package. Those that use compare-and-swap (for example,
At omi cLong) or similar have to be classified as optimistic whereas the implementations of common
concurrent blocking abstractions such as the semaphore are pessimistic. Some classes such as Lock
implementations can even be seen as both (see Appendix A for details). However, constructs using
compare-and-swap, athough offering collision detection ( conpar eAndSet returns a boolean
indicating success), still require the devel oper to implement any recovery strategy.

2.1.5 Alternative Access Mechanisms

Distributed Memory is the idea that in multi-core processors (or in single-core multiple processor
systems), each core/processor has local memory and works on it with exclusivity. If atask isrequired
to collaborate with other core's memory, it must communicate with them as an external resource. The
actor model or distributed message passing are examples.

©2012, Toby Weston « ALL RIGHTS RESERVED.
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Problem Definition

3.1 Example Problem

In order to better contrast the concurrency control mechanisms available, | had to come up with a
concurrency problem that was meaty enough to represent real-world experiences. | ended up choosing
aproblem around request statistics.

3.1.1 Request Statistics

In typical client-server software, multiple clients make requests to a centralised server to achieve
some business goal. This gives agood opportunity to encounter concurrency issues as multiple clients
might be interested in the same kinds of things represented on the server. In our case, we're interested
in recording statistics around generic requests that clients make. In aweb application, this might
represent the request-response cycle and in our case, we're interested in recording how long requests
take to complete and respond to the client. We're interested in performance monitoring our client-
server application.

Specifically then, the problem is given a new web-application, we would like to record request
statistics against specific services so that we can understand typical response times and set achievable
service level agreements with customers.

3.1.2 The Ping Server

The web-application that we're interested in is called PingPong. It is a server that respondsto HTTP
GET requeststo the URL / pi ng with aHTTP message of 200 OK.

Expanding the problem description, we'd like to record the following information about requests

e Total, communicative number of pi ng requests
» Total, communicative number of failed pi ng requests (those that response with HTTP 5xx)
e Total, communicative number of successful pi ng requests
» The mean response time for pi ng requests
» Throughput of pi ng requestsin requests per second
» Longest response time of pi ng requests
» The most recent response time for api ng request (to highlight the variance that would be
smoothed by showing mean response times above)
e Total, communicative response time for al pi ng requests
In addition, we would also like to

» Reset the counters at any time
» Allow counter retrieval and reset from distributed machine
» Allow asdliding window implementation to better highlight rapid trend changes

For the purpose of this exercise, we're not interested in measuring requests statistics from the client or
non-server side generated errors (errors that can not be represented by the server with HTTP 5xx error
codes). For example, we're not interested in timeout of connection failures.

©2012, Toby Weston « ALL RIGHTS RESERVED.
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Solutions

4.1 Example Solutions

This section presents various solutions to recording statistics of our HTTP server. Essentidly, |
went about implementing basic performance monitoring abstractions and embedding these into the
server. By implementing various versions of these components (optimistic and pessimistic), we're
able to compare their characteristics. As the embedded components are associated with the request-
response cycle, we can also expect them to see lots of concurrent access when the server is under
heavy simulated load which isjust what we're interested in.

This section includes awrite up of thread safe components used to

» capture thread usage, the number of created, active and terminated threads in the system.
» thread timings, number of threads executed, total time and average time to execute.
« throughput of any request showing total number and a mean requests per second.

* Instrument contention of guarded segments as aration of collisions against successful
acquisition.
discussing the testing strategies to each and how that influenced the implementations.

4.1.1 The Software Transaction Memory Library Used

The specific Software Transaction Memory library used for this discussion is the Multiverse STM. |
used some syntactic sugar available as part of Akka (akka-stm) but the core STM is Multiverse.

Multiverse version 0.6 is based around the Multi Version Concurrency Control (MVCC) idea

used by popular database implementations. Asit's name suggests it revolves around the idea of
keeping versions of data or snapshots and detecting if a conflict has occurred when working with a
particular version. Multiverse implements this idea using a central At ori cLong to increment version
numbers associated with shared memory writes (Veentjer, 2011, section 10.1) and it's underlying
conpar eAndSet for conflict detection. This can be seen as an implementation of the Transaction
Locking I (TL2) agorithm (Dice et al, 2006). The central engine of Multiverseis called AlphaSTM.

Multiverse version 0.7 shifted away from the central clock towards the idea of a conflict counter
(comparable to SkySTM by Lev et a) which offers less contention, greater scalability and may prove
key in providing distributed transactional memory in the future. The implementation has various
strategies which should offer improvements over vanilla SkySTM. The improved core engine pools
more objects and is described by its author as faster than previous versions. Lev (2009) notes that
SkySTM offers more scalable STM than previous approaches such as TL2. The central enginein

0.7 started live as BetaSTM but has since been deprecated and a newer version called GammaSTM
introduced. At the time of writing, GammaSTM isthe engineused in 0.7.

4.2 Source Code

All source code is available from Subversion. To checkout and recreate this document, run the
following commands (* nix platforms).

svn checkout http://badrobot. googl ecode. conif svn/trunk/bad. robot/conconc badrobot-readionly
mvn pdf : pdf
open target/pdf/concurrency-control -1.0- SNAPSHOT. pdf

or the following on Windows platforms

©2012, Toby Weston « ALL RIGHTS RESERVED.
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svn checkout http://badrobot. googl ecode. com svn/trunk/ bad. robot/conconc badrobot-read;only
mvn pdf : pdf
start target\pdf\concurrency-control-1.0- SNAPSHOT. pdf

©2012, Toby Weston « ALL RIGHTS RESERVED.
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Instrumenting Thread Usage using ThreadCounter

5.1 Instrumenting Thread Usage

One area that was identified as an opportunity to explore shared access was around instrumenting
thread usage within the system. The requirement being around understanding the cumulative number
of threads created and the currently active threads (threads started but not yet terminated).

5.1.1 Shared Infrastructure

The ultimate goal was to create alternative implementations of something that can be used to
instrument thread usage within the system, one pessimistic / lock based implementation and an
alternative optimistic implementation. It makes sense if these competing implementations follow a
similar approach so that they can be swapped easily for comparison.

Therole of collecting or processing this information can be seen in terms of an observer, for example,

public interface ThreadObserver {
voi d threadCreated();
void threadStarted();
voi d threadTerm nated();

Fig 5.1. The basic observer interface

Java's Thr eadFact or y isanatural place to make observations about thread activity. All that would
be required is for the application to be wired up to use the following thread factory and we can start
our instrumentation.

public class Qbservabl eThreadFactory inplenents ThreadFactory {
private final ThreadOQobserver observer;
publi ¢ Qobservabl eThr eadFact ory( ThreadObserver observer) {
this. observer = observer;
}
@verride
public Thread newThread(final Runnable runnable) {
Thread thread = new Thread(new Runnabl e() {
public void run() {
try {
observer.threadStarted();
runnabl e. run();
} finally {
observer. threadTerm nated();
}
}
B
observer.threadCreated();
return thread,

Fig 5.2. Example use of the observer in a ThreadFactory
Note that the classis easily tested using mock objects.

©2012, Toby Weston « ALL RIGHTS RESERVED.
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5.1.2 Pessimistic / Lock Based Synchronisation

This section talks about the lock based implementation an observer called Thr eadCount er and its
evolution.

5.1.2.1 Basic Implementation
A naive implementation of the Thr eadCount er class might look like this

@Not ( Thr eadSaf e. cl ass)
public class ThreadCounter inplenments ThreadObserver {

private |l ong activeThreads;

private | ong createdThreads;

@verride

public void threadCreated() {
creat edThr eads++;

}

@verride

public void threadStarted() {
activeThreads++;

}

@verride

public void threadTerm nated() {
activeThreads--;

}

@verride

public |l ong getActiveCount () {
return activeThreads;

}

@verride

public |l ong get CreatedCount () {
return createdThreads;

}

@verride

public void reset() {
activeThreads = O;
creat edThreads = O;

Fig 5.3. Naive implementation of ThreadCounter
The basic test below shows the implementation to be correct (at least in a non-concurrent context).

©2012, Toby Weston « ALL RIGHTS RESERVED.
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public class ThreadCounterTest {
private final ThreadCounter counter = new ThreadCounter ()
@est
public void shouldlnitialiseCounts() {
assert That (counter. get ActiveCount (), is(0OL));
assert That (counter. get CreatedCount (), is(0OL));
}
@est
public void shoul dl ncrenent Acti veCount () {
i ncrenent Acti veThr eadsBy(3);
assert That (counter. get ActiveCount (), is(3L));
}
@est
public void shoul dDecrenent Acti veThreadCount () {
i ncrenent Acti veThr eadsBy(5);
assert That (count er. get Acti veCount (), is(5L));
decrenent Acti veThr eadsBy(5) ;
assert That (count er. get ActiveCount (), is(0L));
}
@est
public void shoul dl ncrement Creat edCount () {
i ncrenent Thr eadsBy( 6) ;
assert That (counter. get Creat edCount (), is(6L));
}
@est
public void shoul dReset Counts() {
i ncrenent Acti veThr eadsBy(8);
i ncrenent Thr eadsBy(5) ;
counter.reset();
assert That (count er. get Acti veCount (), is(0L));
assert That (count er. get Creat edCount (), is(OL));

}
private void incrementActiveThreadsBy(int ambunt) {
for (int i =0; i < anpunt; i++)
counter.threadStarted();
}
private void decrement ActiveThreadsBy(int amunt) {
for (int i =0; i < anpunt; i++)
counter.threadTerm nated();
}
private void increment ThreadsBy(int amunt) {
for (int i =0; i < anpunt; i++)
counter.threadCreated();
}

Fig 5.4. Basic single-thread behavioural unit test

5.1.3.1 Testing Thread Safety

The next test shows that it isn't correct from a concurrent context. Here, the tempus-fugit micro-
library is used to run each test method repeatedly over several threads. Specifically, each of the test
methods are run one hundred times (thanks to the Repeat i ngRul e rule) in fifty threads (thanks to
the Concur r ent Rul e rule long with the count variable). To kick this off for each test method

©2012, Toby Weston « ALL RIGHTS RESERVED.
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at the same time, the Concur r ent Test Runner isused. Otherwise, each of the test methods will
run in their own threads, repeatedly but in sequence (ie, not i f yThr eadSt ar t ed would run, then
noti f yThr eadTer mi nat ed and so on). Adding the @GRunW t h means that each test method is
kicked off in its own thread at roughly the same time.

Separating afunctionally correctness test from athread-safety style test meant that the two concerns
could stay separate during testing and devel opment.

@unWt h( Concurrent Test Runner. cl ass)
public class ThreadCounterlntegrati onTest {
private static final ThreadCounter counter = new ThreadCounter();
@Rul e public ConcurrentRule concurrent = new ConcurrentRul e();
@Rul e public RepeatingRule repeating = new Repeati ngRul e();
@est
@Repeat i ng
@Concurrent (count = 50)
public void notifyThreadStarted() {
counter.threadStarted();
Introduce.jitter();
}
@est
@Repeat i ng
@Concurrent (count = 10)
public void notifyThreadTerm nated() {
counter.threadTerm nated();
Introduce.jitter();
}
@est
@Repeat i ng
@Concurrent (count = 50)
public void notifyThreadCreated() {
counter.threadCreated();
Introduce.jitter();
}
@\fterd ass
public static void verifyCounter() {
assert That (count er. get Creat edCount (), is(5000L));
assert That (counter. get ActiveCount (), is(4000L));

Fig 5.5. Multi-threaded test highlighting concurrency problems

Thecal tol ntroduce. jitter () introduces apseudo-random delay of up to five milliseconds.
Thisis designed to try and avoid deterministic behaviour and exaggerate the affect of the tests.

Thefirst assertion is expecting a created count of five thousand (having called t hr eadCr eat ed one
hundred times over fifty threads). The second assertion also ensuresthat t hr eadTer ni nat ed affects
the active count (it will be run one hundred times over ten threads). The default number of repetitions
from the Repeat i ngRul e isone hundred.

5.1.3.2 Testing Invariants

The above test is designed to load the class under test so heavily that it isreasonably likely to fail the
assertions (inveri f yCount er () ). It doesn't however test the invariant around the r eset method. It
could be argued that if r eset iscaled, it should reset both act i veThr eads and cr eat edThr eads

©2012, Toby Weston « ALL RIGHTS RESERVED.
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atomically. That isto say, no additional updates should be allowed to either variable until both have
been set to zero.

Testing the invariant directly proved too difficult to do, it was just too hard to simulate the race
condition between resetting and setting multiple variables. However, as well see, the natural
progression of the implementation lead to an alternative strategy which ensuresthe invariant is
maintained.

5.1.3.3 Making Thr eadCount er Thread Safe

Making the class thread safe (and passing the previous tests) was pretty straight forward using the
At oni cLong class.

@hr eadSaf e
public class ThreadCounter inplenments ThreadObserver {
private final Atom cLong activeThreads = new Atom cLong();
private final Atom cLong createdThreads = new Atom cLong();
@verride
public void threadCreated() {
creat edThr eads. get Andl ncrenent () ;
}
@verride
public void threadStarted() {
activeThreads. get Andl ncrenent () ;
}
@verride
public void threadTerm nated() {
activeThreads. get AndDecrenent () ;
}
@verride
public 1 ong getActiveCount () {
return activeThreads. get();
}
@verride
public long getCreatedCount () {
return createdThreads. get();
}
@verride
public void reset() {
activeThreads. set (0);
creat edThreads. set (0);

Fig 5.6. Thread safe version of the ThreadCounter

At this point, the classis thread safe but the invariant around ther eset method is still not maintained
(or tested). A simple fix might be to usethe synchr oni zed keyword on all of the methods (at which
point, we'd no longer need to the At oni cLongs). Thisis explored in the below.

5.1.3.4 Maintaining the Invariant
Aninitial revision to guarding access to the state to maintain the invariant is shown below.

©2012, Toby Weston « ALL RIGHTS RESERVED.
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@hr eadSaf e
public class ThreadCounter inplenments ThreadObserver {
private final Atom cLong activeThreads = new Atom cLong();
private final Atom cLong createdThreads = new Atom cLong();
private final ReentrantLock | ock = new ReentrantLock();
@verride
public void threadCreated() {
execut e(t hreadCreat ed) . usi ng(Il ock) ;
}
@verride
public void threadStarted() {
execut e(t hreadStarted). usi ng(l ock);
}
@verride
public void threadTerm nated() {
execut e(t hreadTer m nat ed) . usi ng(| ock) ;
}
@verride
public long getActiveCount () {
return activeThreads. get();
}
@verride
public |1 ong getCreatedCount () {
return createdThreads. get();
}
@verride
public void reset() {
if (acquired(lock))
execut e(reset). using(l ock);

}

@verride

public Void call() throws RuntimeException {
creat edThr eads. get Andl ncrenent () ;
return null;

}s

@verride

public Void call() throws RuntimeException {
activeThreads. get Andl ncrenent () ;
return null;

}s

@verride

public Void call() throws RuntimeException {
activeThreads. get AndDecrenent () ;
return null;

}s

@verride
public Void call() throws RuntinmeException {

activeThreads. set (0);
creat edThreads. set (0);
return null;

©20(2, TOby}Weston « ALL RIGHTS RESERVED.
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private static Bool ean acquired(final Lock lock) {
return resetlnterruptFl agWhen(new | nterrupti bl e<Bool ean>()

@verride

private Call abl e<Voi d, RuntinmeException> threadCreated = new Cal | abl e<Voi d, Runti neException>() {

private Call abl e<Voi d, RuntinmeException> threadStarted = new Cal | abl e<Voi d, Runti neException>() {

private Call abl e<Voi d, RuntinmeException> threadTerm nated = new Cal | abl e<Voi d, RuntimeException>() {

private Call abl e<Voi d, RuntinmeException> reset = new Call abl e<Voi d, RuntinmeException>() ({




5 Instrumenting Thread Usage using ThreadCounter 13

Fig 5.7. More elaborate version ensuring consistency during reset

This revision attempts to maintain the invariant using Java Locks and at the same encapsulate the
use of the locksin a separate class ( Execut eUsi ngLock) to ensure consistent behaviour. The
unfortunate verbosity of using Cal | abl e objectsto achieve thisis addressed later. For now, the
helper class looks like this

public class ExecuteUsi ngLock<T, E extends Exception> {
private final Callable<T, E> callable;
private ExecuteUsi ngLock(Call abl e<T, E> callable) {
this.callable = callable;
}
public static <T, E extends Exception> ExecuteUsi ngLock<T, E> execute(Callabl e<T, |[E> callable) {
return new Execut eUsi ngLock<T, E>(call able);

}
public T using(Lock lock) throws E {

try {

| ock. | ock();

return callable.call();
} finally {

| ock. unl ock();

}

Fig 5.8. Execute Callables ensuring lock and unlock semantics

By using the same lock to guard all the write methods, we're effectively implementing a class
equivilant to one that synchronises on al the write methods. It becomes more serial than previous
revisions (ie, you can't call t hr eadSt ar t ed at the sametimeast hr eadTer mi nat ed). It'sup to
you, to decide if that's a big deal or not.

Ther eset method has been implemented to try and acquire the lock before actually executing the
reset functionality. Thisis an attempt to optimise the reset and isn't really necessary unless you've
tested and identified it as a bottleneck. It's here redlly as part of the academic exercise.

Asthe same lock is used when writing (including the reset), there's no need to lock on the read as the
underlying At omi cLong will ensure visibility of any successful writes. As discussed, we could avoid
the use of locks completely by synchronising al the methods and if we dropped the At ori cLongsin
favour of | ongs, we could make the variablesvol at i | e to ensure visibility. These alternatives are
roughly equivalent but by exposing the lock in this revision we can create atest using mock objects
that separates the synchronisation policy from the functionality of the class.

5.1.3.5 Tidying Up

A quick tidy up saw me push the anonymous Cal | abl e objectsinto their own classes and reduce the
noicein the Thr eadCount er .
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@hr eadSaf e
public class ThreadCounter inplenments ThreadObserver {

private final Atom cLong activeThreads = new Atom cLong();
private final Atom cLong createdThreads = new Atom cLong();
private final ReentrantLock | ock = new ReentrantLock();
@verride
public void threadCreated() {
execut e(i ncrenent (creat edThreads)) . usi ng(l ock);
}
@verride
public void threadStarted() {
execut e(i ncrenent (acti veThreads)). using(l ock);
}
@verride
public void threadTerm nated() {
execut e(decrenent (acti veThreads)) . using(l ock);
}
@verride
public long getActiveCount () {
return activeThreads. get();
}
@verride
public |1 ong getCreatedCount () {
return createdThreads. get();
}
@verride
public void reset() {
if (acquired(lock))

execute(reset Of (acti veThreads, createdThreads)). using(l ock);

Fig 5.9. Tidied version of the ThreadCounter

public class Increment inplenents Callabl e<Void, RuntineException> {

private final Atom cLong counter;

public static Increment increnent(Atom cLong counter) ({
return new | ncrenent (counter);

}

private | ncrenment (Atom cLong counter) {
this.counter = counter;

}

@verride

public Void call() throws RuntinmeException {
count er. get Andl ncrenent () ;
return null;

©2012,

Fig 5.10. Pushing theincrementing Callable into its own class
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public class AcquireLock {

public static Bool ean acquired(final Lock |ock) {
return resetlnterruptFl agWen(new I nterrupti bl e<Bool ean>() {
@verride
public Boolean call () throws InterruptedException {
return | ock.tryLock(10, M LLI SECONDS);

1)

Fig 5.11. Pushing tryLock semanticsin its own class

public class Reset inplenments Callabl e<Void, RuntinmeException> {

private final List<AtonicLong> counters;
public static Reset resetOf (Atom cLong... counters) {
return new Reset (counters);

}

private Reset(Atom cLong... counters) {
this.counters = asList(counters);

}

@verride

public Void call() throws RuntinmeException {
for (Atom cLong counter : counters)
counter.set(0);
return null;

Fig 5.12. Pushing thereset Callable into its own class

5.1.3.6 Building out the Guar d Interface

There are some limitations with the current implementation, notably the inability to test the invariant.
We a'so know that we ultimately want to create a counter that isn't limited to a pessimistic locking
strategy. The idea of guarding shared memory seems to be abstract enough to imply non-lock based
solutions, so | created abasic Gaur d interface.

public interface Guard {

<R, E extends Exception> R execute(Callabl e<R E> callable) throws E;
Bool ean guarding();

Fig 5.13. The Guard class

The basic lock based implementation of which is shown below

©2012,
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public class LockingGuard inplenments Guard {
private final Lock I ock;
publi ¢ Locki ngGuard(Lock I ock) {
this.lock = | ock;
}
@verride
public <R, E extends Exception> R execute(Callable<R, E> callable) throws E {
try {
| ock. l ock();
return callable.call();

} finally {
I ock. unl ock();

}

@verride

publ i ¢ Bool ean guardi ng() {
return acquired(l ock);

Fig 5.14. The Lock based guard

This opens several opportunities for the improving the current implementation, specifically around
testing individual components in isolation and finally creating atest to ensure the invariant in
maintained. The first step isto refactor the Thr eadCount er to use the Guar d.
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@hr eadSaf e
public class ThreadCounter inplenments ThreadObserver {
private final Atom cLong activeThreads = new Atom cLong();
private final Atom cLong createdThreads = new Atom cLong();
private final CGuard guard;
public ThreadCounter(CGuard guard) {
this.guard = guard;
}
@verride
public void threadCreated() {
guard. execut e(i ncrenent (creat edThr eads)) ;
}
@verride
public void threadStarted() {
guar d. execut e(i ncrenent (acti veThr eads));
}
@verride
public void threadTerm nated() {
guar d. execut e(decrenment (acti veThr eads));
}
@verride
public long getActiveCount () {
return activeThreads. get();
}
@verride
public |1 ong getCreatedCount () {
return createdThreads. get();
}
@verride
public void reset() {
i f (guard. guarding())
guard. execut e(reset O (acti veThreads, createdThreads));

}

and in order to test the original Thr eadCount er Test (which shouldn't be concerned with thread
safety), adummy Guar d isimplemented. Notice thisjust delegatesto the Cal | abl e object.

public class Unguarded inplenments Guard {

public static Guard unguarded() {
return new Unguarded();

}

@verride

public <R, E extends Exception> R execute(Callable<R, E> callable) throws E {
return callable.call();

}

@verride

publ i ¢ Bool ean guardi ng() {
return true;

}

This alowsthe original test to be unaffected
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public class ThreadCounterTest {

private final ThreadCounter counter = new ThreadCounter (unguarded());

}

We can also change tact when it comes to testing the invariant. Rather than try and reproduce the race
condition, it's sufficient to ensure that the same Guar d is used for write and reset methods. Assuming
the runtime guard implementation has been tested, atest to ensure the same guard is used for all of the
methods ensures the invariant will be maintained. Thisis very implementation specific but given the

race condition proved too difficult to reproduce, it's a sensible compromise.

@RunW t h(JMock. cl ass)

public class ThreadCounterlnvariant Test {
private final Mckery context = new Mckery();
private final Guard guard = context.nock(Guard. class);

@est
public void shoul dMakeGuardedCal | OnWites() throws Exception {
cont ext . checki ng(new Expectations() {{
exactly(3).of (guard).execute(wi th(any(Callable.class)));
s
counter.threadCreated();
counter.threadStarted();
counter.threadTerm nated();
}
@rest

cont ext . checki ng(new Expectations() {{
one(guard).guarding(); wll(returnValue(true));
one(guard).execute(w th(any(Callable.class)));
s
counter.reset();
}
@rest
public void shoul dNot Att enpt GuardedCal | () throws Exception {
cont ext . checki ng(new Expectations() {{
one(guard).guarding(); wll(returnValue(false));
never (guard) . execute(w t h(any(Cal | abl e. cl ass)));

I3OF

counter.reset();

private final ThreadCounter counter = new ThreadCounter(guard, new Atom cLongCount

public void shoul dMakeGuar dedCal | For Reset AndSoMai nt ai nl nvari ant () throws Exceptio

er(),

5.1.3.7 Taking it Further with Count er s
Using the Guar d abstraction is interesting but doesn't give us very much other than allowing

aternative guard implementations. The current LockGuar d uses alLock and we could supply an
aternative that uses synchr oni zed but we don't gain much. Aslong as we use the same guard

instance, we'll get consistent behaviour between implementations. For example,
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public class SynchronisingGuard i nplenents Guard {
public static Guard synchronised() {
return new Synchroni si ngGuard();
}
@verride

return callable.call();
}
@verride
publ i ¢ Bool ean guardi ng() {
return true;

}

public synchronized <R, E extends Exception> R execute(Callable<R E> callable) t

hrows E {

What might be more useful isto come up with aCount er abstract to separate the increment and

decrement functions from the classes that use them from the guarding policy that controls their access.

For example,

public interface Counter {
voi d increment();
voi d decrenent();
Long get();
void reset();

}

With an example implementation of

public class LongCounter inplenents Counter {
private Long count = new Long(0);
@verride
public void increnent() {
count ++;
}
@verride
public void decrenent() {
count - -;
}
@verride
public Long get() {
return count;
}
@verride
public void reset() {
count = new Long(0);

}

or an atomic version
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public class Atom cLongCounter inplenents Counter {
private volatile final Atom cLong count = new Atom cLong();
@verride
public void increnent() {
count . get Andl ncrenent () ;
}
@verride
public void decrenent() {
count . get AndDecrenent () ;
}
@verride
public void reset() {
count. set (0);
}
public Long get() {
return count.get();

}

Whi

ch means we can change the Thr eadCount er to take the dependencies on construction.

@rhr eadSaf e
public class ThreadCounter inplenments ThreadObserver {
private final Counter activeThreads;
private final Counter createdThreads;
private final Guard guard;
public ThreadCounter(CQuard guard, Counter activeThreads, Counter createdThreads)
this.guard = guard;
this.activeThreads = activeThreads;
this.createdThreads = createdThreads;

}

20

We can therefore construct a Thr eadCount er with different semantics when it comes to use from a
concurrent context. For example,

public static ThreadOobserver createlockBasedThreadSaf eCounter() {
return new ThreadCount er (new Locki ngGuard(new ReentrantLock()), new LongCounter()

}

creates a thread safe thread counter using the reentrant lock to ensure the invariant around reset is
maintained. The visibility of writes against the (non-thread safe) LongCount er can be ensured by the
vol ati | e keyword in LongCount er .

public static ThreadObserver createThreadSafeCounter Wt hout Mai ntai ni ngReset | nvari ant (
return new Thr eadCount er (unguar ded(), new At om cLongCounter (), new At om cLongCount

}

The above statement creates a thread counter which is thread safe (by virtue of the
At omi cLongCount er s) but doesn't maintain the invariant. The unguarded Guar d doesn't include any
synchronisation.
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public static ThreadOQoserver createSynchroni sedThreadSaf eCounter () {
return new ThreadCount er (synchroni sed(), new LongCounter(), new LongCounter());

}

The above statement is roughly equivalent, it creates a thread safe thread counter but uses a
Javamonitor rather than aLock for its guarding policy. It maintains the invariant as before. The
synchr oni sed method is the static creation method for Synchr oni si ngGuar d class.

public static ThreadOoserver createNonThreadSafeCounter() {
return new ThreadCount er (unguarded(), new LongCounter(), new LongCounter());

}

The above statement creates a non-thread safe version.

The original functionality test can also be updated to use mocks (as the increment functionality can
be tested separately in the Count er implementations. For example, using JMock, we can ensure
increment and decrement functionality is called against a Count er instance.
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@unW t h(JMock. cl ass)
public class ThreadCounterTest {
private final Mckery context = new Mckery();
private final Counter activeThreads = context.nock(Counter.class, "active");
private final Counter createdThreads = context.nock(Counter.class, "created");
private ThreadCounter counter;
@Bef ore
public void setupCounter() {
counter = new ThreadCount er (unguarded(), activeThreads, createdThreads);
}
@est
public void shoul dl ncrenent Acti veCount () {
cont ext . checki ng(new Expectations() {{
one(activeThreads).increnment();
)
counter.threadStarted();
}
@est
public void shoul dDecrenent Acti veThreadCount () {
cont ext . checki ng(new Expectations() {{
one(activeThreads). decrenent();
)
counter.threadTerm nated();
}
@est
public void shoul dl ncrement Creat edCount () {
cont ext . checki ng(new Expectations(){{
one(createdThreads).increment();
)
counter.threadCreated();
}
@est
public void shoul dReset Counts() {
cont ext . checki ng(new Expectations(){{
one(activeThreads).reset();
one(createdThreads).reset();
)

counter.reset();

5.1.4 Optimistic / Software Transaction Memory

In principle, a Software Transactional Memory (STM) version of the Thr eadCount er should isolate
access to the shared memory (the Count er s in our case) such that the integrity of that accessis
maintained even from a concurrent context. The existing concurrent tests should all pass.

Using an STM based implementation of the Thr eadCount er 's Guar d, we can ot straight into the
unit of work that the guard defines. In thisway, the gaurd is no longer protecting or synchronising
access but instead defining actions that will form an atomic unit of work.

For example, the snippet below shows how the guar d co-ordinates access to decrement the counter.
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public void threadTerm nated() {
guard. execut e( decrenent (acti veThreads));

}

When an STM implementation of the guar d is used, we can define our unit of work. For example,

public class StnmGuard inplements Guard {
public <R, E extends Exception> R execute(Callable<R, E> callable) throws E {
return runAtomcally(callable);

}

Wherether unAt omi cal | y method delegates to the underlying STM library. In this case, we're

using the Multiverse STM library asthe underlying library and Akka STM to provide some neater

abstractions.

public class RunAtom call y<R, E extends Excepti on> extends Atom c<R> {
private final Callable<R E> call able;

return new RunAtom cal |l y<R, E>(call abl e). execute();
}
public RunAtom cally(Callable<R, E> callable) {
this.callable = callable;
}
@verride
public R atomcally() {
try {
return callable.call();
} catch (Exception e) {
t hrow new Runti neException(e);

}

public static <R, E extends Exception> R runAtom cally(Callable<R E> callabl

) {

A call to the isbasically equivalent to the following (minus the exception handling).

new At om c<R>() {
return callable.call();
}. execute();

So the above defines the unit of work but any shared memory to be included in the transaction has

to be defined as atransactional reference. Thisis done by defining them asaRef instance. For

example, to make use of the new St nuar d we would have to combine them with aCount er asa

transactional reference.
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@Not ( Thr eadSaf e. cl ass)
public class Transacti onal Ref erenceCounter inplenents Counter {
private final Ref<Long> count = new Ref<Long>(0L);
@verride
public void increnent() {
count.set(count.get() + 1L);
}
@verride
public void decrenent() {
count.set(count.get() - 1);
}
@verride
public Long get() {
return count.get();
}
@verride
public void reset() {
count . set (0OL);

}

Asyou'll notice, this classin itself isn't thread safe, nor isthe St nGuar d. However, when they're
combined with the Thr eadCount er they'll passall our previously defined tests (including the
concurrent ones). Therefore, the class construction below represents athread safe Thr eadCount er

that will also maintain the invariant.

static ThreadOobserver createThreadSaf eCount er Mai ntai ni ngl nvariant() {

}

return new ThreadCount er (new StnGuard(), new Transacti onal Ref erenceCounter (),

new

If we consider an implementation similar to the pessimistic

24

Transact i onal Ref ere

cr eat eThr eadSaf eCount er Wt hout Mai nt ai ni ngReset | nvari ant we can bypass the guard

and implement atomicity around the individual mutators as below.
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@hr eadSaf e
public class StmAtom cLongCounter inplenments Counter {
private final Ref<Long> count = new Ref<Long>(0L);
@verride
public void increnent() {
new At om c<Long>() {
@verride
public Long atomically() {
return count.set(count.get() + 1L);

}
}.execute();
}
@verride

public void decrenent() {
new At om c<Long>() {
@verride
public Long atomically() {
return count.set(count.get() - 1L);

}
}.execute();
}
@verride

public Long get() {
return count.get();
}
@verride
public void reset() {
new At om c<Long>() {
@verride
public Long atomically() {
return count.set(0L);

}

}.execute();

}

Which in context of the Thr eadCount er class would be used as follows.

static ThreadOoserver createThreadSaf eCount er Wt hout Mai nt ai ni ngReset I nvariant () {

return new ThreadCount er (unguarded(), new St mAt om cLongCounter (), new St mAtomi cLo

ngCounter());
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6 Instrumenting Thread Timings using ThreadPoolTimer

6.1 Instrumenting Thread Pool Timings

6.1.1 Testing using Time

Testing something that involves time can be tricky as we don't want to introduce non-determinism
by using the real system clock. Instead, we generally have to try and control time using collaborators
such as mock system clock like the Cl ock interface. For example, a St opWat ch class night maintain
an internal time which it can use to compare with the current time in order to work out the elapsed
time. A straight forward implementation might look like the following (taken from tempus-fugit).

public class BadStopWatch {
private Date startDate;
private |ong el apsedTi ne;
publ i c BadStopWatch() {
this.startDate = new Date();
}
public Duration el apsedTi me() {
return mllis(new Date().getTine() - startDate.getTine());
}
}

Writing the (rather silly) test below highlights a problem using real time in the class

public class BadSt opWat chTest {
@est
public void el apsedTi me() throws InterruptedException{
BadSt opWat ch wat ch = new BadSt opWat ch() ;
Thread. sl eep(m | 1is(100));
assert That (wat ch. el apsedTi me(), is(mllis(100)));

}

We've introduced non-determinism by using real time, there's no guarantee that we can accurately
delay the execution between object constructions and evaluation of the assertions for precisely 100
milliseconds. Unsurprisingly, the test is unlikely to pass consistently.

java.l ang. AssertionError:
Expected: is <Duration 100 M LLI SECONDS>

got: <Duration 103 M LLI SECONDS>
at org.junit.Assert.assertThat (Assert.java: 778)
at org.junit.Assert.assert That (Assert.java: 736)
at com googl e. code. t empusf ugi t.t enpor al . BadSt opWat chTest . el apsedTi me( BadSt opWat chTest | j ava: 32)

We clearly need away to inject a clock that we can control. We can improve the implementation
above by introducing the G ock interface and injecting amock instance using jmock.
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public class BetterStopwatch {
private Date startDate;
private | ong el apsedTi ne;
private O ock clock;
public BetterStopwat ch(d ock clock) {
this.clock = clock;
this.startDate = clock.tinme();
}
public Duration el apsedTime() {
return mllis(clock.tine() - startDate.getTine());

@est
public void el apsedTi meFronBetter St opWat ch() {
cont ext . checki ng(new Expectations() {{
one(clock).time(); wll(returnVal ue(new Date(0)));
one(clock).time(); wll(returnVal ue(new Date(100)));
s
Bett er St opWat ch wat ch = new Bett er St opWat ch( cl ock) ;
assert That (wat ch. el apsedTi me(), is(mllis(100)));

}

27

Alternatively, we could create our own mock to encapsulate this kind of behaviour like the following.

public final class Myvabl el ock inplenents d ock {
private final Date now,
public Movabl ed ock() {
now = new Dat e(0);
}
publ i c Movabl eC ock(Date date) {
now = new Dat e(date.getTine());
}
public Date time() {
return new Dat e(now. getTi ne());
}
public void incrementBy(Duration tinme) {
now. set Ti ne(now. getTine() + tine.inMIlis());

}

With the following test

@est

public void el apsedTi meFronBetter St opWatch() {
Bet t er St opWat ch wat ch = new Bett er St opWat ch( cl ock);
clock.incrementBy(m|1is(100));
assert That (wat ch. el apsedTinme(), is(mllis(100)));

6.1.2 The Race Condition Involving Time

Applying the principle above to the Thr eadPool Ti mer proved alittle moreinvolved. Thereisa

race condition when cal culating the mean execution time. Here, we have time being stored along with
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the total number of executions. Divide one by the other to get the mean, but these are two operations
which if uncontrolled, introduce the possibility of unlucky timing in terms of the interleaving with
other threads affecting those numbers.

@verride
public Long get MeanExecuti onTi nme() {
return total Time / tasks;

}

The sequence of eventsis shown below when access to the two variables is uncoordinated.

OO0

set va!ue, +o |

set va!ue,-fo o]

Uncoordinated access works fine when Thr ead A isthe only one writing to the variables, the
result will be 1000 / 10 = 100. However, with the introduction of another thread and different
interleaving, the result can be skewed. For example,

set value +o 4056
B
set valve +o 35

With thisinterleaving, thet ot al Ti me isupdated to 4050 but after the main thread has read the value
for t ot al Ti me and before the related operation to set the task count to 35 could be completed. This
update hasn't been able to compl ete before part of another operation has begun and so the consistency
of the later will be compromised. The values the main thread will use can be seen by the dotted return
value above; 1000 / 35 = 28. 6, it should either be 1000 / 10 or 4050 / 35 but not part of
each as in the example above.
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Testing for consistency of the mean execution time ( get MeanExecut i onTi ne) isdifficult. Initially,
abasic approach for the pessimistic version of the Thr eadPool Ti mer could use real time but
introduce uniform distribution of wait time for each timed thread. We can force an execution time

of between zero and five milliseconds and rely on the uniformity of the pseudo-random number
generator to make assertions. The theory being that any failures in the assertion are down to bugsin
the concurrent usage of the timer rather than natural variation in the wait time.

public class ThreadPool Ti merl ntegrationTest {

private static final ThreadPool Timer tinmer = new ThreadPool Tiner(...);

@Rul e public ConcurrentRule concurrent = new ConcurrentRul e();

@Rul e public RepeatingRule repeating = new Repeati ngRul e();

@oncurrent (count = 50)

@Repeating (repetition = 100)

@est

public void executeTask() {
Runnabl e task = newRunnabl e();
timer. bef oreExecute(current Thread(), task);
Introduce.jitter(upTo(mllis(5)));
tinmer.afterExecute(task, NO _EXCEPTION);

}

@\fterd ass

public static void verifyCounters() {
assert That (timer. get Number Of Executions(), is(5000L));
assert That (timer. get MeanExecutionTime(), is(2L));
assertThat (timer.get Term nated(), is(0OL));

}

Here, the test is using the same approach to spawning multiple threads as the

Thr eadCount er | nt egr at i onTest . Using real time here, we're attempting to introduce a delay of
2.5 milliseconds (on average) betweent i mer . bef or eExecut e andti mer. af t er Execut e. The
assertions ensure that the number of executionsis correct (as we know the expected count ahead of
time) and make a best guess on the mean execution time. Mostly, thiswill pass but it still represents
an intermittently failing test. Not good.

In the optimistic version, the actual time to execute outweighed the artificial delay skewing the
assumption that on average the time taken would be 2.5 milliseconds. We can't rely on the forced
delay being the dominant contributor as the actual execution time took proportionally longer than the
simulated delay. Anecdotally, thisislikely to be caused by contention and retriesin the STM but welll
revisit that later. The affect was a good reminder why using real time can be problematic and forced a
rethink.

Somehow, we really want to control time but with more complex semantics than the simple
St opWat ch example above. In the case of the Thr eadPool Ti mer it effectively hasto maintain
multiple stopwatches, so we'd need to control multiple instances of time!

6.1.3 The Use of ThreadLocal

TheThr eadLocal classallows usto associate avariable with aparticular thread, it basically
maintains a map of threads to instance variables. Because only a single thread can access avariable, it
isinherently thread-safe and doesn't really fall into a classification as either optimistic or pessimistic
contral; it's just enforcing serial, single-threaded behaviour.

In testing for the race condition when calculating mean execution time, we make life easier for
ourselvesif we can control the stopwatch used to time the execution from within the test. Usually, we
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can just use something like the Movabl ed ock classto do this, effectively mocking the stopwatch
within the test. However, the Thr eadPool Ti ner isrequired to use multiple stopwatches, one for
each thread it's responsible for timing.

For example, when the timer starts the stopwatch, it must do so for the current thread. The class
requires that the current thread be passed into the bef or eExecut e method in order to ensure this.
When another timer is started by calling the same method (lets say, at the same time, but from a
different thread), the class should start a new stopwatch tied to the current thread. Thisrequirement is
largely influenced by the semantics of thej ava. uti | . concurrent. Thr eadPool Execut or which
provides the before and after extension points that we'll be using.

A basic implementation would be to associate a thread with a map, start a stopwatch and associate
it with that thread. Fortunately for us, that's exactly what Thr eadLocal provides. So, assuming
the method is called with the correct parameters (seetheassert below), we can just use a

Thr eadLocal St opWat ch for thet i mer instance below.

@verride
public void beforeExecute(Thread thread, Runnable task) {

assert (Thread. current Thread() . equal s(thread));
tinmer.start();
/1 increment the total task count
}
@verride

public void afterExecute(Runnabl e task, Throwabl e throwable) {
tinmer.stop();
total Ti ne. add(ti mer. el apsedTi nme());

}

This still leaves the question of testing it and controlling the time. The test above uses a static
Thr eadPool Ti mer and so we need to be able to share an instance of aCl ock between the
threads (asit will also need to be static) but maintain per-thread semantics. Sounds like ajob for
Thr eadLocal again.
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public class ThreadLocal Movabl eC ock i npl enents d ock {
private final ThreadlLocal <Date> now,
publi ¢ ThreadLocal Movabl ed ock() {
now = new ThreadLocal <Dat e>() {
@verride
protected Date initial Value() {
return new Date(0);

}
public ThreadLocal Movabl eC ock(final Date date) {

now = new ThreadLocal <Date>() {
@verride
protected Date initial Val ue() {
return new Date(date.getTine());

}
@verride
public Date tinme() {
return new Date(now. get().getTine());
}
public void increnentBy(Duration tine) {
now. get ().setTime(now. get().getTime() + time.inMIlis());

}

We can now use this to make our test more deterministic and not reliant on real time.
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public class ThreadPool Ti merl ntegrationTest {
private static final ThreadLocal Movabl eCl ock cl ock = new ThreadLocal Movabl eC ock(};
private static final ThreadPool Timer tinmer = new ThreadPool Tiner(...);
private static final Throwabl e NO EXCEPTION = null;

@Rul e public ConcurrentRule concurrent = new ConcurrentRul e();
@Rul e public RepeatingRule repeating = new Repeati ngRul e();
@oncurrent (count = 50)
@Repeating (repetition = 100)
@est
public void executeTask() {
Runnabl e task = newRunnabl e();
timer. bef oreExecute(current Thread(), task);
cl ock.incrementBy(m11lis(400));
tinmer.afterExecute(task, NO _EXCEPTION);
Introduce.jitter();

@\fterd ass

public static void verifyCounters() {
assert That (ti mer. get Nunber Of Executi ons(), is(5000L));
assert That (ti mer. get MeanExecutionTi ne(), is(400L));
assert That (ti mer.get Term nated(), is(OL));

}

To specificaly test for the race condition, we should be able check the consistency of the date during
multiple updates. A test similar to the above but with assertionsimmediately after the updates would
be better but the tricky part is moving time forward a different amount for each thread and be able

to make meaningful assertions. The test below achieves this by manually controlling the number of
threads and iterations per thread (rather than use the Concur r ent Rul e and Repeat i ngRul e and
then using the thread count to create a multiplier for the delay in the stopwatch.
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public class ThreadPool Ti mer RaceCondi ti onl ntegrati onTest {
private static final int threadCount = 50;
private static final int repetitions = 100;

private static final Throwabl e NO EXCEPTION = null;
@est
public void executeTask() throws InterruptedException, ExecutionException {
Li st <Future<?>> futures = new Arrayli st <Future<?>>();
Execut or Servi ce pool = newFi xedThr eadPool (threadCount);
for (int i =1; i <= threadCount; i++)
futures. add(pool . submi t (newTest Thread(m | i s(threadCount * 10))));
for (Future<?> future : futures)
future.get();
shut down( pool ). wai ti ngFor Conpl eti on(seconds(5));
}
private static Call abl e<Voi d> newTest Thread(fi nal Duration delay) {
return new Cal |l abl e<Voi d>() {
@verride
public Void call() throws RuntimeException {
for (int count = 1; count <= repetitions; count++) {
Runnabl e task = newRunnabl e();
timer. bef oreExecut e(current Thread(), task);
cl ock. i ncrenent By(del ay) ;
tinmer.afterExecute(task, NO _EXCEPTION);
assert That (ti mer. get MeanExecutionTine(), is(delay.inMIlis()));
Introduce.jitter();

}

return null;

private static final ThreadLocal Movabl eC ock cl ock = new ThreadLocal Movabl eC ock(
private static final ThreadPool Timer tinmer = new ThreadPool Ti mer (new Synchroni sin

gCQuard(),

6.1.4 What to Guard

Having gone some way to creating tests to uncover concurrency problems, a basic implementation of

the Thr eadPool Ti mer might look like the following
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public class ThreadPool Ti mer inpl ements ThreadPool Cbserver,
private final CGuard guard;
private St opWat ch ti ner;
private Count er tasks;
private Count er term nated;
private final Accumul ati ngCounter<Duration> total Tine;
publ i c ThreadPool Ti mer (Guard guard, StopWatch tiner,
this.timer = tinmer;
this. t asks;
this.term nated = term nated;
this.
this.

final
final
final

tasks =

total Time =
guard = guard;

total Ti ne;

}
@verride

assert (Thread. current Thread() . equal s(thread));
tinmer.start();

}

@verride

tinmer.stop();
tasks.increment();
total Ti ne. add(ti nmer. el apsedTi nme());
}
@verride
public void term nated() {
term nated.increment();
}
@verride
public Long get Nunber O Executions() {
return tasks.get();
}
@verride
public Long getTotal Tine() {
return total Time.get();
}
@verride
public Long get MeanExecuti onTi ne() {
return guard. execute(divide(total Time, by(tasks)));
}
@verride
public Long get Term nated() {
return term nated.get();
}
@verride
public void reset() {
total Tine.reset();
tasks.reset();
term nated.reset();

Count er

Thr eadPool Ti mer MBean {

tasks, Counter term

public void beforeExecute(Thread thread, Runnable task) {

public void afterExecute(Runnabl e task, Throwabl e throwable) {

nat ed, Accumnul ati ngC
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This implementation fails the above race condition test (

Thr eadPool Ti mer RaceCondi ti onl nt egrati onTest ). The use of theguar d inthe

get MeanExecut i onTi me and variable write methods ensure that writes to individual variables

are coordinated with the reads. Updates during the read are prevented but our test still fails. It turns
out we've missed something fundamental here, the guard doesn't actually protect us from specific
interleaving when the protected methods have themselves completed. The interleaving showing
diagram in Fig.XXX above s still very much possible. We'd need to coordinate read and writes access
of multiple variables in order to preserve consistent behaviour under concurrent usage.

The offending methods from the the original implementation are shown below.

public void afterExecute(Runnabl e task, Throwabl e throwable) {
tinmer.stop();
tasks.increment();
total Ti ne. add(ti mer. el apsedTi nme());
}
public Long get MeanExecuti onTi ne() {
return guard. execute(divide(total Time, by(tasks)));

}

This shows that although the three linesin the af t er Execut e method are individually thread safe,
they do not preserve any aromaticity with respect to each other. The task counter and total time can be
updated independently as in diagram Fig.XXX above. We can fix this by employing the same gaurd
the get MeanExecut i onTi me method uses as below.

public void beforeExecute(Thread thread, Runnable task) {
assert (Thread. current Thread().equal s(thread));
timer.start();
}
public void afterExecute(Runnabl e task, Throwable throwable) {
tinmer.stop();
guard. execut e(new Cal | abl e<Voi d, Runti meException>() {
@verride
public Void call() throws Runti meException {
tasks.increment();
total Ti ne. add(ti mer. el apsedTi me());
return null;

1)
}
public Long get MeanExecutionTi ne() {

return guard. execute(divide(total Time, by(tasks)));

}

The implementation now passes our test. Access to individua variables is now coordinated using the
guard as shown in the gorillaUML below. The diagram is trying to indicate that the updates and the
reads (along with the calculation) are now all protected.
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We can further tidy up the code by using instances of Cal | abl e classes rather than the anonymous
version likethis.

I

public void afterExecute(Runnabl e task, Throwabl e throwable) {
tinmer.stop();
guar d. execut e(
al | O (
i ncrenent (tasks),
add(timer. el apsedTime(), to(total Tine))

6.1.5 Summary
The development steps for the Thr eadPool Ti ner followed the now familiar steps.

1 Develop unit test to drive out the behaviour of the timer in a non-concurrent usage (
Thr eadPool Ti ner Test )

2 Develop the basic timer classto pass the test

3 Develop the aintegration test running in a concurrent context (
Thr eadPool Ti mer | nt egr ati onTest ) to identify individual elements that require
concurrency control.

4 Extend the class, make the test pass. Our example forced the use of Count er variables which
could be made thread safe.

5 ldentify any collaborating elements that require concurrency control, formulate as atest (
Thr eadPool Ti mer RaceCondi ti onl nt egrati onTest)
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6 Extend the class, make the test pass. Our example forced guarding collaborating variables rather
than making individual variables thread safe.

Interestingly, to some degree steps 3. and 5. require some analysis from the developer before the test
can be written. For step 1., the test can genuinely be written first to drive out behaviour but for the
other testing steps, an understanding of the concurrency loop holes is required so that a test can be
tailored to expose them. Thisis an uncomfortable situation for the TDD practitioner to bein but with
concurrency tests, it often boils down to spotting the holes first then filling them rather than letting the
tests expose the holes for you.
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Instrumenting Throughput

7.1 Throughput
A general purpose interface to expose throughput might look like the following.

public interface Throughput MBean {
Doubl e get Request sPer Second() ;
Long get Tot al Requests();

Any implementation would require some form of timer to record elapsed time and the ability to record
the number of requests made. If we think about the thing that we want to observe as arequest, we can
phrase an interface to record the start and finish points as the following.

public interface Request Cbserver {
Request started();
public interface Request {
Duration finished();

}

With the intention of using an instance to instrument before / after points something like the
following.

public void doGet(HttpServl et Request request, H tpServl et Response response) {
Request request = throughput.started();
try {
doSonmeWor k() ;
} finally {
request . finished();

}

In thisway, we're able to indicate to some component arequest has started and provide a callback
object to indicate when its finished. No mention of atimer and lots of "tell, don't ask" which means
the component is free to decide what to do with the information. A basic implementation might ook
like this.
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public class Throughput inplenents Request Cbserver, Throughput MBean {

private final StopWatch tiner;
private final Counter count;
private final Accumul ati ngCounter<Duration> total Tine;
publi ¢ Throughput (St opWatch tiner, Counter count, Accunul ati ngCounter<Duration> t
this.timer = tinmer;
this.count = count;
this.total Time = total Tine;
}
@verride
public Request started() {
tinmer.start();
return new Request () {
@verride
public Duration finished() {
count.increnent();
tinmer.stop();
total Ti ne. add(ti nmer. el apsedTi me());
return tinmer. el apsedTi nme();

@verride
publ i ¢ Doubl e get Request sPer Second() {
return (double) count.get() / ((double) total Tine.get() / 1000);
}
@verride
public Long get Tot al Requests() {
return count.get();

ot al Ti me) {

A unit style test, ensuring just the behaviour and not thread safety, might look like the following.
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public class Throughput Test {
private final StopWatch tinmer = new StopWat chStub();

@est
public void cal cul at eThr oughput Wt hNoRequest s() {

t hroughput . started();

tinmer.set El apsedTime(m11is(355));

assert That (t hr oughput . get Request sPer Second(), is( NaN));
}

@est
public void cal cul at eThroughput () throws Exception {

makeRequest Lasting(m | 1is(250));

makeRequest Lasting(m | 1is(150));

makeRequest Lasting(m |1 1is(50));

makeRequest Lasting(m 11is(300));

assert That (t hr oughput . get Request sPer Second(), is(5.333333333333333));
}
private void makeRequest Lasting(Duration duration) {

Request Cbserver. Request request = throughput.started();

tinmer.set El apsedTi me(duration);

request . finished();

private final Throughput throughput = new Throughput (tiner, new LongCounter(),

ne

w Atom cM | | i secondC

In terms of thread safety, the class depends on a St opWat ch and two Count er s. If these are

themselves thread safe implementations, then the following test will pass. This highlights that a class
can be thread safe in two ways, the first is that its composite variables are thread safe in isolation and
the second is that the classitself is free from race conditions and is consistent with any invariants and
so on (see the Conclusions section). The following test only tests that the variables are thread safein
isolation is so much as any race condition possible in the get Request sPer Second isn't exercised.
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public class ThroughputlntegrationTest {
private static final StopWatch timer = new ThreadLocal St opWat ch( cl ock);

@Rul e public ConcurrentRule concurrent = new ConcurrentRul e();
@Rul e public RepeatingRule repeating = new Repeati ngRul e();
@oncurrent (count = 10)
@Repeating (repetition = 100)
@est
public void recordThroughput () {
Request Observer. Request request = throughput.started();
cl ock.incrementBy(mllis(250));
request . finished();
}
@\fterd ass
public static void verify() {
Long requests = throughput. get Tot al Request s();
Doubl e request sPer Second = t hroughput . get Request sPer Second() ;
assert That (requests, is(1000L));
assert That (request sPer Second, is(4D));

private static final ThreadLocal Movabl eC ock cl ock = new ThreadLocal Movabl eC ock(

private static final Throughput throughput = new Throughput (tiner, new AtonicLong

Counter (),
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Instrumenting Blocking Ratio

8.1 Contention Monitoring and Block/Wait Counts

When making comparisons between the implementations, it may be useful to understand any
contention between competing threads on resources. For us, we're interested in contention when
accessing shared memory. When shared memory is protected (or serialised) by asingle guard, several
concurrent regquests will contend for exclusive access to the guard. A contention ratio then, may be
useful in understanding the potential strain a protected resources could come under.

A simple contention ratio then can be seen as

nunmber of concurrent calls to a shared nmenory resource : nunber of guards

For example, twenty concurrent callsto asingle synchr oni zed block would result in aratio of

20:1

in other words, the single lock could service only 5% of thetime.

However, thisis not an easy thing to predict or measure ahead of time. We're not going to be able

to tell how many calls to a shared resource are going to be made at precisely the same time. We can
however, measure the affect of some implied contention. For example, we can measure the number
of failed guarded calls and compare these to the number of success calls under different loads. The
implication here being that the throughput (the number of requests the system is going to be able

to make) will be affected by the contention ratio and by extension the effectiveness of the guard
implementation. A guard that processes multiple requests quickly will positively affect throughput
compared to aguard that blocks excessively, which will slow things down. At least, that's the theory.

However, because of the way in which our guards protect a shared resource, we can't just monitor
the number of failed guarded calls and use it as an indicator of contention. For example, a Software
Transaction Memory guard might retry dozens of time before failing, whereas aLock based solution
may fail on the first attempt and never retry. Both were asked just once to attempt the call, but the
behaviour of the implementation dictates the number of retries. What number represents the request
count, the original request (one) of the number of retries (dozens)?

So, to paint afuller picture, we need to understand our system in terms of contention (how likely is
it that a service is going to be heavily contended) as well as how quickly the service can process the
contention (both in terms of processing time and time spent co-ordinating access to shared memory)
and the observable outcome to the throughput of the service. In summary, if shared memory isn't
contended (under load), it's likely that co-ordinating efforts are having little affect on the throughput.
We want to be able to stretch the system to simulate contention in order to observe the affect our
guards have on throughput.

L ets paraphrase some of these assumptions to make things clearer

* we want to exagger ate contention in order to exagger atethe affect of a Guar d
implementation (so that we can evaluate their use)

» we can increase the contention by increasing the load (number of concurrent requests) made
to aservice

* we can measure a block/wait count for our Guar d implementations

 if wetweak theload so that block/wait counts are similar, a measur e of throughput
indicates effectiveness of the Guar d (aswell as the intermediate code on the critical path)
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8.1.1 The Blocking Coefficient

We introduced the idea of measuring blocked calls or waits above in order to better interpret various
measures to evaluate our Guar ds. We can formalise the ideainto talking about a blocking coefficient.
A coefficient is some multiplicative factor, a constant term affecting a calculation. In our case, the
blocking coefficient is amount of time not spent servicing atask (blocking or waiting) expressed as a
percentage (or fraction) of the total time.

The blocking coefficient as a fraction is a number between 0 and 1 to indicate how much a particular
task is blocking (or waiting). Zero indicates CPU intensive work (no blocking) and a number close to
one represents a heavily blocked task. A fully blocked task would have 1 as a coefficient.

For example, if atask isidling (waiting or blocked) 80% of the time and so actually processing 20%
of the time, the blocking coefficient is 0.8 (80 / 100).

In terms of our Guar d implementations, we're able to monitor;

1 Blocking with Pessimistic ( synchr oni zed) Control - the number of requests (or time)
blocked whilst attempting to acquire an object monitor.

2 Waiting with Optimistic ( Locks) Control - the number of requests (or time) made to wait
whilst attempting to acquire alock.

3 Contention with Optimistic (Softwar e Transactional Memory) Control - the number of
aborted atomic updates (this assumes an abort is the result of an attempt to access a transactional
reference which has aready been accessed and not some other runtime exception).

In al cases, we can use these values along with total request counts to give us our coefficient. For
example, the waiting or blocked count divided by the sample count where the sample count is equal

to the number of regquests made. This gives the ratio of failed requests (due to blocked or waiting). For
example, if 10 calls out of 100 failed, the ratio would be 0.1 (10 / 100).

We can also use the waiting or blocked time divided by the CPU (service) time. This produces a
similar indication as above but thistimein terms of time. For example, if thread A was busy for
1000 milliseconds and waiting for 100 milliseconds, the result would be 0.1 milliseconds (100
microseconds).

See Appendix A for some additional background around why and how threads will enter blocked or
waiting states.

8.1.2 Blocking in Pessimistic Concurrency Control

To begin with we're interested in measuring the blocking coefficient caused by the waiting on monitor
acquisition. We can use the Java class Thr eadl nf o to get information about a particular thread
including the block count (the number of times the thread has been in the BLOCKED state) and total
elapsed time athread has been blocked (again, the total time spent in the BLOCKED state€). The state
transition to BLOCKED is only possible when a thread is waiting to acquire (or re-acquire) an object's
monitor.

Unfortunately, the Thr eadl nf o class doesn't distinguish between the specific monitor athread is
blocked waiting to acquire but we can make some assuptions and provide an approximation using the
following code.
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public class Bl ockingRatio {
private final Counter count = new Atom cLongCounter();
private final Map<Long, Long> bl ocked = new Concurrent HashMap<Long, Long>();
private final ThreadMXBean jvm
publi c Bl ocki ngRati o( Fact ory<ThreadMXBean> factory) {
jvm = factory.create();
if (jvmisThreadContenti onMnitoringSupported())
j vm set Thr eadCont ent i onMoni t ori ngEnabl ed(true);
}
public void sanple() {
count.increment();
bl ocked. put (current Thread().getld(), getBl ockedCount(currentThread()));
}
public Double get() {
double ratio = 0;
for (Long bl ocked : this.blocked. val ues())
ratio += (doubl e) bl ocked / (double) count.get();
return ratio;
}
private |ong getBl ockedCount (Thread thread) {
return jvm get Threadl nfo(thread. getld()).getBl ockedCount ();

}

}

Here, we assume that client will "sample" blocked calls at appropriate times which is basically during
load. We also brush over the fact that the instrumentation itself may influence the results. We use an
At omi cLongCount er and Concur r ent HashMap as they both offer optimistic thread safety (with
the implication being that they are fast). We also defer maintaining the consistency of updating count
and bl ocked together (for example, by using a Guar d) for the same reason; namely we're favouring
performance over accuracy. We use a factory to create the Thr eadMXBean in order to be able to write
unit style tests without using real VM thread metadata.

Aswe are interested in monitoring contention around locks, we can conveniently use the

Bl ocki ngRat i o class from within a custom Guar d implementation. The guard is our abstraction

for protecting resources and we're interested in understanding contention at this point. Aswe're also
interested in the total number of requests, we can employ the Thr oughput class defined previously in
the same place. For example,
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}

public class ContentionhnitoringGuard inplenments Guard, ContentionhMonitoringGuardvBe

private final BlockingRatio contention = new Bl ocki ngRati o(new JnxThr eadMkBean())
private final Throughput throughput;
publ i c ContentionMnitoringCGuard(Throughput throughput) {
t hi s. throughput = throughput;
}
@verride
public <R E extends Exception> R execute(Callable<R E> callable) throws E {
synchroni zed (this) {
Request Cbserver. Request request = throughput.started();
try {
return callable.call();
} finally {
request . finished();
contention.sanple();

}

@verride

publ i ¢ Bool ean guardi ng() {
return true;

}

@verride

publ i c Doubl e getContentionRatio() {
return contention.get();

}

@verride

publ i ¢ Doubl e get Request sPer Second() {
return throughput.get Request sPer Second();

}

@verride

public Long get Tot al Requests() {
return throughput.get Tot al Requests();

an {

We include the throughput as well as blocking coefficient so that we can adjust the load later.

An instance of this guard will be used to protect some shared resource and as such will sample the
current thread's block count just before releasing it's monitor. A thread which manages to execute the
guarded section (the call tocal | abl e. cal | () ) without being blocked will record no contention.

If however, whilst that thread is executing the guarded section, another attempts to do the same, it

will block until the first has released the monitor. In this case, the second thread will record a blocked
attempt when executing the cont ent i on. sanpl e() method. A thread dump showing the kind of
blocking behaviour that Cont ent i onMoni t ori ngGuar d would capture as contention is shown

below.
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Thread Thread-0@®: (state = RUNNABLE)

- bad. robot . pessi m stic. Cont enti onMoni t ori ngGuar dTest $1. cal | (Cont enti onMoni t ori ngGuardTest . j ava: 14)

- bad. robot . pessim stic. Contenti onMnitoringGuard. execut e(Contenti onhbnitoringCGuard.java: 36)

- bad. robot . pessi m stic. Cont enti onMoni t ori ngGuar dTest $3. run( Cont enti onMbni t ori ngGuar dTest . j ava: 36)

- java.lang. Thread. run(Thread. j ava: 722)
Thread Thread-1@0: (state = BLOCKED)

- bad. robot . pessim stic. ContentionhMnitoringGuard. execute(Contenti onhbnitoringCGuard.java: 34)

- bad. robot . pessi m stic. Cont enti onMoni t ori ngGuar dTest $3. run( Cont enti onMbni t ori ngGuar dTest . j ava: 36)

- java.lang. Thread. run(Thread. j ava: 722)

Thr ead- 0 acquired the guard's monitor and is executing (it's in the RUNNABLE state)

whilst Thr ead- 1 is BLOCKED at the execut e call. When Thr ead- 1 finally continues the

Cont ent i onMbni t ori ngQuar d would indicate a contention ratio of 0.5. Half the requests were
contended.

8.1.3 Waiting in Locks

8.1.4 Contention in Software Transaction Memory

Using hooks into the Multiverse STM library, we can observe the number of aborts vs the number

of successful commits giving us the contention ratio. Multiverse allows us to add a deferred task to
execute on successful commit and a compensating task on aborts. Implementing basic tasks using our
existing Count er s, we can wire up a basic contention monitoring Guar d. For example, we can re-use
thel ncr ement class shown below to increment Count er s on abort or on commit events.

public class Increment<T extends Counter> inplements Call abl e<Void, RuntinmeException>
private final Counter counter;
public static <T extends Counter> |Increment<T> increment(T counter) {
return new | ncrenment <T>(counter);

—~

}
private Increment (T counter) {
this.counter = counter;
}
@verride
public Void call() throws RuntimeException {

counter.increment();
return null;

The increment functionality isaCal | abl e, soif we adapt it to either a Conpensat i ngTask or
Def er r edTask,
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public final class Callabl eAdaptors {

return new ConpensatingTask() {

@verride
public void run() {
callable.call();

}

return new DeferredTask() {
@verride
public void run() {
callable.call();

public static ConpensatingTask onAbort (final Callable<?, RuntineException> call abl

public static DeferredTask onCommit(final Callable<?, RuntinmeException> call able)

47

e) {

-~

we can then schedule increment behaviour on the events using our "runner” (and the infrastructure

supplied by Multiverseinthe STMUt i | s class) below.

public class RunAtom cal |l y<R, E extends Exception> extends Atom c<R> {
private final Callable<R E> callable;
private final DeferredTask onConmmt;
private final ConpensatingTask onAbort;

}

public static <R E extends Exception> R runAtonically(Callable<R E> callable,
return new RunAtomi cal | y<R, E>(call able, onCommit, onAbort).execute();

}

this.callable = callable;
this.onCommit = onCommit;
this.onAbort = onAbort;

}
@verride
public R atomcally() {
try {
Stmltils. schedul eDef erredTask(onComit);
Stmltils. schedul eConpensati ngTask(onAbort);
return callable.call();
} catch (Exception e) {
t hrow new Runti neException(e);
}
}

public static <R, E extends Exception> R runAtomcally(Callable<R E> callable) {
return new RunAtomi cal |l y<R, E>(call abl e, new DoNot hi ngDef erredTask(), new DoN

RunAt omi cal | y(Cal | abl e<R, E> cal | abl e, DeferredTask onCommit, ConpensatingTask on

D¢

ot hi ngConpensati ngTa

ef erredTask onCommi t

Abort) {

Finally, the Guar d can use the counters to work out contention when using the "runner” to
r unAt omi cal | y. For example,
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public class ContentionhbnitoringStnmGuard inplements Guard, ContentionMnitoringStnGuardvBean {
private final Counter aborts = new Atom cLongCounter();
private final Counter commts = new Atom cLongCounter();
@verride
public <R, E extends Exception> R execute(Callable<R, E> callable) throws E {
return runAtom cally(callable, onComit(increment(commts)), onAbort(increment(aborts)));
}
@verride
publ i c Bool ean guarding() {
return true;
}
@verride
publ i c Doubl e get ContentionRatio() {
return (double) aborts.get() / (double) commits.get();

}

8.1.5 Choosing the Optimal Number of Threads

Aswe saw earlier, if we can keep the blocking coefficient in asimilar range by adjusting the load, we

can make stronger inferences against the resulting throughput. However, thisisn't the whole story. We
also want to try and tune the system so that it's able to utilise the system processors efficiently. It may

therefore make sense to have a guide when deciding how many threads to use when testing.

8.1.5.1 CPU Bound Tasks
For CPU bound tasks, Goetz (2002, 2006.) recommends

‘threads = nunber of CPUs + 1 ‘

Which isintuitive asif a CPU is being kept busy, we can't do more work than the number of CPUs.
Goetz purports that the additional CPU has been shown as an improvement over omitting it (2006.
pp.XXX), presumably helping with thread context switching.

8.1.5.2 10 Bound Tasks

Working out the optimal number for 10 bound tasksis less obvious. During an 10 bound task, a CPU
will be left idle (waiting or blocking). Thisidle time can be better used in initiating another 10 bound
request.

Subramaniam (2011, p.31) describes the optimal number of threads in terms of the following formula.

‘threads = nunber of cores / (1 — blocking coefficient)

-
t [

:l—ul

And Goetz (2002) describes the optimal number of threads in terms of the following.

‘threads = nunber of cores * (1 + wait time / service tine)

?‘.:r'(l-i—tl—:)

Wherewe canthink of wait tine / service timeasameasure of how contended thetask is.

©2012, Toby Weston « ALL RIGHTS RESERVED.



8 Instrumenting Blocking Ratio 49

When we use equivalent termsin Subramaniam's expression we can begin to form the proposition
that both formulas are equivalent. Starting with Goetz' s formula, we assert that w+s=1 and remove the
service time (s) from Goetz' s formula giving the following

t=c(1 “')
T +1—té'

We can continue by multiplying both sides by 1-w reducing the right hand side to ¢ before reversing
the operation and revealing Subramaniam’ s expression.

t{l—w)=c(l—w+w)
t{l—w)==¢

o

:l—ul

t
Aswe were able to show that Subramaniam and Goetz agree on the number of threadsto use for 10

bound tasks, we'll be confident in our choices of thread pool sizes when it comes to performance
testing later.
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Conclusions

9.1 Conclusions

9.1.1 General Comments / Observations

In the pessimistic world, contended locks obviously block. The misconception that locking is
expensive comes from this but in fact, uncontended |ocks add only tens of nanoseconds (biased
locking at around 2-4 clock cycles and fast user-model locks otherwise). Thisisall highly optimised
by the JVM as synchronisation has been so common in development. Things like lock elision, escape
analysis, adaptive locking and lock coarsening all aim to correct the oversights of the developer.
These optimisations and the support for the pessimistic model from the language have set its place
and we won't be seeing it go away for some time yet.

From some guy

9.1.2 Fine Grained Concurrent Components

Stressing components like the instrumentation classes in a concurrent context demonstrates typical
concurrency control of fine-grained shared memory. It does not, however, demonstrate coarse grained
concurrency like the type you might expect when using business components. What | mean hereis
that when two or more business processes are run in parallel, the same kind of problems may appear
as when we access fine-grained shared memory. The consistency of critical sections may still need to
be preserved and race conditions between processes may still exist.

This discussion hasn't focused on this at all.

9.1.3 Pessimistic / Lock Based Synchronisation

Aswe noted in the Shared Memory Model section, pessimistic solutions revolve around using
intrinsic locks, essentially using the synchr oni zed keyword. In looking at solutions using this
approach, it'simportant to be aware of some drawbacks associated with it, namely;

» Lock'scan block indefinitely, causing non-recoverable liveliness problems such as deadl ock.

» Various up-front strategies must be employed to avoid situations above (for example, ensuring
consistent lock acquisition ordering to avoid deadl ock.

9.1.4 Making Classes Thread Safe

Aswe've seen from different styles of testsin the Solution section, we can look at class level thread
safety as having two dimensions. A class can be thread safe, in terms of

1 itscomposite variables. Variables which are available for read and write access from multiple
threads need to be protected against lost updates (visibility) and write consistency. The Count er
implementations when used in isolation are a good example here.

We can protect these at the class level or at the client level. In our examples, it'sinteresting
to note that we haven't needed to implement asynchr oni zed version of aCount er instead
favouring client Guar d implementations to protect access. We have implemented optimistic
versions (for example, At o cLongCount er and St mAt oni cLongCount er ).

2 the relationships between composite variables. Any shared variables from 1. above that
collaborate with others should be considered in terms of atomicity. It's likely that any interaction
should be executed under aGuar d. In the same way as a check then set operation is subject to
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race conditions, any collaboration with shared variablesis also open to modifications during the
execution of that collaboration which may subvert the outcome.

It may be worth considering accuracy vs performance here though as sometimes the consistency
isn't always required. An example might bether eset method of Thr eadCount er where we've
chosen to reset the active and create threads together preventing modifications to either until the
reset is complete but in Thr eadPool Ti ner we've chosen to reset variables independently and
allow modifications.
In building out the implementations, | naturally feel into arhythm that fitsinto thisway of looking at
it. Thisisoutlined below.

1 Develop anon-threaded behavioural unit test to help drive out the behaviour of your class.
2 Build the class to passthe test.

3 Develop athreaded integration style test to identify the composite variables of the class that
represent shared state (point 1. above).

4 Implement basic protection for the composite variables.

5 Develop athreaded integration style test to highlight collaborating elements that require
additional protection to ensure consistency of behaviour (maintaining invariants for example)
and avoid race conditions.

6 Implement addition protection against the relationships of the elements, thisis a good candidate
for usingaGuar d.
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12 Appendix A

12.1 Classification of Java Concurrency Control Mechanisms
For the purposes of this discussion, I've classified various options as either optimistic or pessimistic.

12.1.1 Pessimistic

Class or keyword Notes

synchr oni zed Exclusive lock isinherently pessimistic. Client
threads unable to acquire a object's monitor will
enter the BLOCKED state.

Reent r ant Lock Exclusive locks but with additional functionality

meaning they can offer non-blocking semantics
(see below). When aclient thread in unable

to acquire alock, it will enter the WAITING

or TIMED_WAITING state rather than
BLOCKED.

Thr eadLocal Although avoiding contention, when using

Thr eadLocal , it can be argued that we're
expecting the potential for contention and
electing to side-step conflicts. As such, it offers
no explicit collision detection or recovery as
described in the Optimistic Concurrency Control

section.
Pessimistic
12.1.2 Optimistic
Technique or keyword Notes
Software Transactional Memory Often STM offers automatic retry semantics.
vol atile Atomic read and write (Gosling, et al. 2005.

Section. 17.7). A writeto avolatile field
happens-before every subsequent read of that
field (Godling, et al. 2005. Section. 17.4.5).

At omi cl nt eger and others Based on CAS, lock-free agorithm although
on some platforms may involve some form of
internal locking.
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Reent r ant Lock Non-blocking when used to attempt to acquire
alock (usingt r yLock) preceded with a
conditional or allowing the lock to be interrupted
(using | ockl nt errupti bl y) or with atimeout
(usingtryLock(l ong, TimeUnit)).In

this mode, Lockswill not block in so much

as client threads will not enter the BLOCKED
state if unable to acquire the lock but instead
will go into WAITING or TIMED_WAITING
states. Thisis the difference between waiting to
acquire alock dueto synchr oni zed or wai t
as apposed to something that ends up calling a
par k method. See footnote for more details.

Reent r ant Lock (and

Reent r ant ReadW i t eLock) isatype of
ownable syncrhoniser implying that they will

not force client threads to be BLOCKED but

will force waiting instead. This can have all the
same detrimental affects as blocking in terms of
liveliness and performance. See Thr eadMXBean.

Optimistic

12.1.3 When Threads can be Blocked Waiting

With reference to non-blocking algorithms, a blocked thread is one that to some degree can not
progress when waiting for some other thread to release a mutex that it would like to acquire. Java's
documentation is reasonable consistent with this definition but it doesn't imply that athread that is
"blocked" is actually in the state BLOCKED. Java itself describes situations where athread can be
blocked waiting, meaning the following (taken from the JavaDoc ).

A thread can be blocked waiting for one of the following:

* an object monitor to be acquired for entering or reentering a synchronization block/method. The
thread isin the BLOCKED state waiting to enter the synchronized statement or method.

 an object monitor to be notified by another thread. The thread isin the WAITING or
TIMED_WAITING state dueto acall to the Obj ect . wai t method.

 asynchronization object responsible for the thread parking. The thread isin the WAITING or
TIMED_WAITING state dueto acall tothe LockSupport . par k method. The synchronization
object isthe abject returned from LockSupport . get Bl ocker method. Typically itisan
ownable synchronizer or aCondi ti on.

12.1.4 How Threads become blocked
A summary of how threads can enter the various statesis offered below.

BLOCKED synchr oni zed (when monitor is already owned)
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TI MED_WAI Tl NG

Thr ead. sl eep(durati on)

Cbj ect . wai t (ti nmeout)
Thread. j oi n(ti nmeout)
LockSupport . par kNanos(ti nmeout)
LockSupport. parkUntil (ti meout)

WAl TI NG

hj ect . wait ()
Thr ead. j oi n()
LockSupport. park()

12.1.5 Thread Pool Tuning
T
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